$例1、已知函数f(x)=2(x-2)\ln x+ax^2-1.$
$①、当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;$
$②、若f(x)\ge 0恒成立,求实数a的取值范围。$
$解:②2(x-2)\ln x+ax^2-1\ge 0$
$f(1)=a-1\ge 0\Rightarrow a\ge 1,充分性;$
$ax^2\ge x^2,即证2(x-2)\ln x+x^2-1\ge0,必要性;$
$g(x)=2(x-2)\ln x+x^2-1;$
${g}' (x)=2\ln x+\cfrac{2(x-2)}{x} +2x=2\ln x+2-\cfrac{4}{x}+2x, $
${g}' (1)=0,{g}' (x)\nearrow ;g(x)_{min}=g(1)=0$


$例2、设函数f(x)=x^2-(a+2)x+a\ln x\quad (a\in \mathbb{R} ).$
$①、若x=3是f(x)的极值点,求f(x)的单调区间;$
$②、若f(x)\ge 1,求a的取值范围。$
$解:②法一:f(1)=1-(a+2)\ge 1,a\le -2;必要性,$
$证a\le -2,f(x)\ge 1恒成立(充分性);$
$-ax+a\ln x=-a(x-\ln x),{\color{Red} \because x-\ln x \ge 1,易证} \Rightarrow -a(x-\ln x)\ge 2(x-\ln x)$
$故f(x)=x^2-(a+2)x+a\ln x\ge x^2-2x+2(x-\ln x)=x^2-\ln x^2\gt 1;$

$法二:利用函数的保号性,f(x)\ge 1,f(x)-1\ge 0$
$x^2-(a+2)x+a\ln x-1\ge 0$
$x^2-2x+1+{\color{Red} 2x-2-2\ln x}+{\color{Green} (-2-a)(x-\ln x)}\ge 0$
${\color{Red} \because } x^2-2x+1\ge 0,2x-2-2\ln x\ge 0,当且仅当x=1时取=,$
$故(-2-a)(x-\ln x)\ge 0也应满足当且仅当x=1时取=$
$故-2-a\ge 0{\color{Red} \Rightarrow a\le -2}$


$例3、 已知函数f(x)=\ln x-ax.$
$①讨论f(x)的单调性;$
$②设g(x)=e^{x-1}+xf(x),若g(x)\ge 0恒成立,求a的取值范围。$
$解:②g(x)=e^{x-1}+x(\ln x-ax)=e^{x-1}+x\ln x -ax^2\ge 0,$
$g(1)=1-a\ge 0\Rightarrow a\le 1;必要性;$
$证a\le 1时,成立,证充分性;$
${\color{Red} \because\quad x\gt 0} ,-ax^2\ge -x^2$
$g(x)\ge e^{x-1}+x\ln x-x^2\ge 0$
$\cfrac{e^{x-1}}{x} \ln x-x=e^{x-1-\ln x}-(x-1-\ln x)-1\ge 0$
$要证e^x-x-1\ge 0$


$例4、已知函数f(x)=2(x-1)\ln x+ax^2-1$
$①当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程。$
$②若f(x)\ge 0恒成立,求实数a的取值范围。$

$解:②f(1)=a-1\ge 0\Rightarrow a\ge 1,充分性;$
$证a\ge 1时,f(x)\ge 0恒成立。$
${\color{Red} f(x)\ge 2(x-1)\ln x+x^2-1\ge 0}$
$={\color{Red} 2(x-1)\ln x} +{\color{Green} x^2-2\ln x-1} \ge 0$
$易证2(x-1)\ln x和x^2-2\ln x-1均\ge 0,当且仅当x=1时取=0$


$例5、已知函数f(x)=\ln x-x^2;g(x)=xe^{x-1}+\cfrac{1}{2} x^3-2x^2.$
$①讨论f(x)的单调性;$
$②若x\gt0 ,g(x)\ge af(x)恒成立,求实数a的取值范围。$
$解:②h(x)=g(x)-af(x)=xe^{x-1}+\cfrac{1}{2} x^3-2x^2+ax^2-a\ln x\ge 0$
$h(1)a-\cfrac{1}{2} \Rightarrow a\ge \cfrac{1}{2} ,充分性;$
$证a\ge \cfrac{1}{2}时,恒成立。$
${\color{Green} a(x^2-\ln x)易证x^2-\ln x\gt 0} $
${\color{Red} xe^{x-1}+\cfrac{1}{2} x^3-2x^2+\cfrac{1}{2}x^2-\cfrac{1}{2}\ln x\ge 0} $
${\color{Red} 2xe^{x-1}+ x^3-3x^2-\ln x\ge 0} $
${\color{Green} 2x(e^{x-1}-x)+x^3-x^2-\ln x\ge 0}$$$
$2x(e^{x-1}-x)\ge 0,当且仅当x=1时取=$
$x^3-x^2-\ln x\ge 0,当且仅当x=1时取=$

标签: none

添加新评论