抽象数列
抽象数列:
${\color{Green} 1、a_{n+m}=a_n+a_m{\color{Orange} \Rightarrow a_n=na_1=nd} }; $
${\color{Red} 2、a_{n+m}=a_na_m\Rightarrow a_n=a_1^n=q^n} $
${\color{Blue} 3、a_{m+n}+a_{m-n}=2a_m+2a_n\Rightarrow a_n=n^2} $
${\color{Tan} 4、a_{m+n}+a_{m-n}=2a_ma_n\Rightarrow a_n=\cos (\omega n)} $

$q^9=27\therefore q^3=3, \cfrac{a_1a_5+a_3a_6}{a^2_6+2a_3^2}$
$=\cfrac{(q^3)^2+q^3q^6}{(q^6)^2+2(q^3)^3} =\cfrac{q^6(1+q^3)}{q^6(q^6+2q^3)} =\cfrac{4}{15}$
令$m=1,d=a_1=2,S_{k+2}-S_k=a_{k+1}+a_{k+2}=26,k=6$
令$q=1,a_1=q=2$
$\{a_n\}=n^2,求S_n\quad$
$n^3-(n-1)^3=n^3-(n^3-3n^2+3n-1)=3n^2-3n+1\quad $
$(n-1)^3-(n-2)^3=3(n-1)^2-3(n-1)+1\quad $
$(n-2)^3-(n-3)^3=3(n-2)^2-3(n-2)+1\quad $
$(n-3)^3-(n-4)^3=3(n-3)^2-3(n-3)+1\quad $
$\dots \dots \dots $
$2^3-1^3=3\cdot2^2-3\cdot 2+1\quad $
$1^3-0^3=3\cdot1^2-3\cdot 1+1\quad $
左右两边相加,$n^3=3S_n-3\cfrac{n(n+1)}{2}+n$
$2n^3=6S_n-3n(n+1)+2n=6S_n-3n^2-n\Rightarrow 6S_n=2n^3+3n^2+n$
$6S_n=n(2n^2+3n+1)=n(n+1)(2n+1)\Rightarrow S_n=n(2n^2+3n+1)=\cfrac{1}{6}\cdot n(n+1)(2n+1)$
$S_7=7\times 8\times 15{\div} 6=140$

令$a_n=\cos (\omega n)\Rightarrow a_1=\cos \omega =\cfrac{1}{2} $
$\therefore \omega =\cfrac{\pi}{3} ,T=\cfrac{2\pi }{\omega }=6$
$2023=337\times 6+1,a_1=a_{2023}=\cfrac{1}{2} $
















