zq3491 发布的文章

抽象数列:
${\color{Green} 1、a_{n+m}=a_n+a_m{\color{Orange} \Rightarrow a_n=na_1=nd} }; $
${\color{Red} 2、a_{n+m}=a_na_m\Rightarrow a_n=a_1^n=q^n} $
${\color{Blue} 3、a_{m+n}+a_{m-n}=2a_m+2a_n\Rightarrow a_n=n^2} $
${\color{Tan} 4、a_{m+n}+a_{m-n}=2a_ma_n\Rightarrow a_n=\cos (\omega n)} $

2025-02-20T05:38:34.png
$q^9=27\therefore q^3=3, \cfrac{a_1a_5+a_3a_6}{a^2_6+2a_3^2}$
$=\cfrac{(q^3)^2+q^3q^6}{(q^6)^2+2(q^3)^3} =\cfrac{q^6(1+q^3)}{q^6(q^6+2q^3)} =\cfrac{4}{15}$
2025-02-20T05:39:03.png
令$m=1,d=a_1=2,S_{k+2}-S_k=a_{k+1}+a_{k+2}=26,k=6$
2025-02-20T05:39:17.png
令$q=1,a_1=q=2$
2025-02-20T05:39:35.png
$\{a_n\}=n^2,求S_n\quad$
$n^3-(n-1)^3=n^3-(n^3-3n^2+3n-1)=3n^2-3n+1\quad $
$(n-1)^3-(n-2)^3=3(n-1)^2-3(n-1)+1\quad $
$(n-2)^3-(n-3)^3=3(n-2)^2-3(n-2)+1\quad $
$(n-3)^3-(n-4)^3=3(n-3)^2-3(n-3)+1\quad $
$\dots \dots \dots $
$2^3-1^3=3\cdot2^2-3\cdot 2+1\quad $
$1^3-0^3=3\cdot1^2-3\cdot 1+1\quad $
左右两边相加,$n^3=3S_n-3\cfrac{n(n+1)}{2}+n$
$2n^3=6S_n-3n(n+1)+2n=6S_n-3n^2-n\Rightarrow 6S_n=2n^3+3n^2+n$
$6S_n=n(2n^2+3n+1)=n(n+1)(2n+1)\Rightarrow S_n=n(2n^2+3n+1)=\cfrac{1}{6}\cdot n(n+1)(2n+1)$
$S_7=7\times 8\times 15{\div} 6=140$

2025-02-20T05:40:02.png
令$a_n=\cos (\omega n)\Rightarrow a_1=\cos \omega =\cfrac{1}{2} $
$\therefore \omega =\cfrac{\pi}{3} ,T=\cfrac{2\pi }{\omega }=6$
$2023=337\times 6+1,a_1=a_{2023}=\cfrac{1}{2} $

正切分式定理:
${\color{Red} \cfrac{\tan A}{\tan B}+ \cfrac{\tan A}{\tan C} =\cfrac{2a^2}{b^2+c^2-a^2} \qquad} $
${\color{Green} \cfrac{\tan B}{\tan A}+ \cfrac{\tan B}{\tan C} =\cfrac{2b^2}{a^2+c^2-b^2} \qquad} $
${\color{Violet} \cfrac{\tan C}{\tan A}+ \cfrac{\tan C}{\tan B} =\cfrac{2c^2}{a^2+b^2-c^2} \qquad } \cfrac{\tan C}{\tan A}+ \cfrac{\tan C}{\tan B} =\cfrac{2c^2}{a^2+b^2-c^2} \qquad $
$证明:\cfrac{\tan A}{\tan B}=\cfrac{\sin A\cos B}{\cos A \sin B}=\cfrac{a\times \cfrac{a^2+c^2-b^2}{2ac} }{b\times \cfrac{b^2+c^2-a^2}{2bc}}=\cfrac{a^2+c^2-b^2}{b^2+c^2-a^2} $
$\cfrac{\tan A}{\tan C}= \cfrac{\tan A}{\tan C}=\cfrac{\sin A \cos C}{\sin C \cos A}=\cfrac{a\times \cfrac{a^2+b^2-c^2}{2ab} }{c\times \cfrac{b^2+c^2-a^2}{2bc}}=\cfrac{a^2+b^2-c^2}{b^2+c^2-a^2} $
${\color{Red} 两式相加得证 } $
2025-02-20T08:49:56.png

2025-02-20T08:50:45.png

2025-02-20T08:49:56.png

2025-02-20T08:52:33.png
2025-02-20T08:53:39.png
${\color{Red} 此题要用到正切恒等式及中线长定理 } $
2025-02-20T08:55:35.png
${\color{Red} 此题用正切分式定理的证明过程或特殊值法,即分母相等 } $

常用的几个抽象函数模型:
${\color{Red} ①f(x+y)=f(x)+f(y)\Leftrightarrow f(x)=kx;\qquad} $
${\color{Green} ②f(x+y)=f(x)+f(y)+c\Leftrightarrow f(x)=kx+b;\qquad}$
${\color{Red} ③f(xy)=f(x)+f(y)\Leftrightarrow f(x)=\log_{a}{\left | x \right | } ;\qquad} $
${\color{Green} ④f(x+y)=f(x)f(y)\Leftrightarrow y=a^x} $
${\color{Red}⑤ f(x+y)+f(x-y)=2f(x)f(y)} {\color{Green} \Leftrightarrow y=\cos \omega x} $
${\color{Red}⑥ f(x+y)+f(x-y)=f(x)f(y)} {\color{Green} \Leftrightarrow y=A\cos \omega x} $
${\color{Green} ㈦⑦f(x+y)=f(x)+f(y)+2xy\Leftrightarrow f(x)=x^2} $
${\color{Peach} ⑧f(x+y)=f(x)f(\cfrac{\pi}{2}-y)+f(y)f(\cfrac{\pi}{2}-x) \Longrightarrow f(x)=\sin x} $
${\color{Purple} ⑨f^2(x)-f^2(y)=f(x+y)f(x-y)\Leftrightarrow \sin^2x-\sin^2y=\sin (x+y)\sin (x-y)}$正弦平方差公式
请宝贝们,证明一下正弦平方差定理,在右边往左边证。


2025-02-20T01:39:56.png
设$f(x)=A\cos \omega x\Rightarrow f(x+y)=A(\cos\omega x\cos \omega y-\sin \omega x\sin \omega y);\quad $
$f(x-y)=A(\cos\omega x\cos \omega y+\sin \omega x\sin \omega y)\Rightarrow 左边=f(x+y)+f(x-y)=2A\cos\omega x\cos \omega y$
$右边=f(x)f(y)=A^2\cos\omega x\cos \omega y\mapsto 2A=A^2,A=2$
$f(1)=2\cos \omega =1\Rightarrow \omega=\cfrac{\pi}{3} \Rightarrow f(x)=2\cos \cfrac{\pi}{3} x
$
$2(\cos \cfrac{\pi}{3} +\cos \cfrac{2\pi}{3}+\cos \cfrac{3\pi}{3}+\cos \cfrac{4\pi}{3})=-3$
2025-02-20T01:48:32.png
构造:$f(x)=x^2\log \left | x \right | \qquad $
$f(xy)=(xy)^2\log \left | (xy) \right | =x^2y^2(\log \left | x \right |+\left |y \right |)=y^2f(x)+x^2f(y)$
2025-02-20T02:41:51.png
同第一题$f(x)=2\cos \omega$
2025-02-20T02:44:24.png
左边$=\log xy+m=\log x+\log y+m;\quad $
右边$=f(x)+f(y)-1=\log x+m+\log y+m-1; \quad $
$m=2m-1\Rightarrow m=1$
$f(4)=\log_{a}{4} +1=2\Rightarrow a=4;\therefore f(x)=\log_{4}{x} +1$
$\therefore f(\cfrac{1}{2} )=\log_{4}{\cfrac{1}{2}} +1=\log_{2^2}{2^{-1}} +1=-\cfrac{1}{2}+1=\cfrac{1}{2}$
2025-02-20T03:14:58.png
设$f(x)=\cos \omega x\because f(4)=\cos 4\omega =-1\Rightarrow \omega =\cfrac{\pi}{4} $
$\therefore f(x)=\cos \cfrac{\pi}{4} x$
2025-02-20T03:27:05.png
$\sin x$
2025-02-20T03:28:31.png
设$f(x)=ax^2+bx+c,故左边=f(x)+f(y)=ax^2+bx+c+ay^2+by+c;\quad $
右边=$f(x+y)-xy-1=a(x+y)^2+b(x+y)+c-xy-1=ax^2+ay^2+2axy+b(x+y)+c-xy-1;$
左边=右边;$\begin{cases} c-1=2c\\2a-1=0\end{cases}$
$a=\cfrac{1}{2},c=-1,f(x) =\cfrac{1}{2}x^2+bx-1,f(1)=1,\Rightarrow b=\cfrac{3}{2}$
$f(x) =\cfrac{1}{2}x^2+\cfrac{3}{2}x-1$
2025-02-20T03:46:21.png
设$f(x)=\sin \omega x,f(1)=\sin \omega =1 \Rightarrow \omega =\cfrac{\pi}{2}$
$f(2x+1)为偶函数,故f(2x+1)=f(-2x+1),即f(x)关于x=1对称;$
$f(0)=0,sin为奇函数,关于(2,0)对称,T=\cfrac{2\pi}{\omega}=4$

在三角形$\bigtriangleup ABC中,有\sin ^2A-\sin ^2B=\sin (A+B)\sin (A-B)$
$\sin (A+B)\sin (A-B)=(\sin A\cos B+\cos A\sin B)(\sin A\cos B-\cos A\sin B)$
$=\sin^2 A\cos^2 B-\cos^2 A\sin^2 B=\sin^2 A(1-\sin^2 B)-(1-\sin^2 A)\sin^2 B$
=$\sin ^2A-\sin ^2B$
2025-07-16T04:53:07.png
AD
2025-07-16T05:01:14.png
$\cfrac{3t-t}{1+3t^2} =\cfrac{1}{\sqrt{3} }$
2025-07-16T05:10:06.png
$\cfrac{2\sqrt{6}}{9 } $
2025-07-16T12:13:14.png
$A=\cfrac{\pi}{6}$

$第1题 、b^2-a^2=ac{\color{Red} \Rightarrow } \sin ^2B-\sin ^2A=\sin A \sin C\Rightarrow \sin (B+A) \sin (B-A)=\sin A\sin C$
${\color{Red} \Rightarrow } \sin (B-A)=\sin A {\color{Red} \Rightarrow }B-A=A,B=2A或B-A+A=\pi$
$锐角三角形{\color{Red} \Rightarrow } \begin{cases} 0\lt A\lt \cfrac{\pi}{2}\\ 0\lt 2A\lt \cfrac{\pi}{2}\\ 0\lt \pi -3A\lt \cfrac{\pi}{2}\end{cases}{\color{Red} \Rightarrow} A\in (\cfrac{\pi}{6}, \cfrac{\pi}{4})$
$c选\Rightarrow \cfrac{1}{\cfrac{1}{\tan A} -\cfrac{1}{\tan B} }=\cfrac{\sin A\sin 2A}{-\sin A}=-\sin 2A=\cfrac{\sin A\sin B}{\sin(A-B)} =-\sin 2A$
$D{\color{Green} \Rightarrow 2\sin C=\sin A+\sin B} \Rightarrow 2\sin (A+B)=\sin A+\sin B\Rightarrow 2\sin 3A=\sin A+\sin 2A$
$2[\sin A\cos 2A+\cos A\sin 2A]=\sin A(1+2\cos A)\Rightarrow 2[\sin A(2\cos ^2A-1)+2\sin A\cos ^2A)]=$
$2\sin A(4\cos ^2-1)=\sin A(1+2\cos A)\Rightarrow 8\cos ^2-2=1+2\cos A\Rightarrow 8t^2-2t-3=0,t=\cfrac{3}{4}$
$第二题:数量积,共起点或共终点,夹角就是三角形的顶角。\tan (B-C)展开是含Bc角的,可见是求BC两角的关系。$
$ca\cos B-ba\cos C=-\cfrac{1}{2}c^2\Rightarrow ac\cdot \cfrac{a^2+c^2-b^2}{2ac}-ab\cdot\cfrac{a^2+b^2-c^2}{2ab}=-\cfrac{1}{2}c^2$
$\Rightarrow c^2-b^2=-\cfrac{1}{2} a^2 \Rightarrow \sin ^2C -\sin ^2B= -\cfrac{1}{2} \sin ^2A $
$\sin (C+B)\sin(C-B) =-\cfrac{1}{2} \sin ^2A\Rightarrow \sin (C-B)=-\cfrac{1}{2} \sin A$
$\Rightarrow \sin (C-B)=-\cfrac{1}{2} \sin (B+C)\Rightarrow \cfrac{3}{2} \sin C\cos B=\cfrac{1}{2}\cos C\sin B$
$3\tan C=\tan B$
$第三题:\frac{b}{a} -1=b^2-a^2\Rightarrow \frac{b-a}{a}= b^2-a^2\Rightarrow 1=a^2+ab$
$c=1\Rightarrow c^2=1\Rightarrow a^2=ab+b^2,此时与第一题相同了。$
$\sin ^2C-\sin ^2 A=\sin A\sin B\Rightarrow \sin (C+A)\sin (C-A)=\sin A\sin B\Rightarrow C=2A
B=\pi -3A$
$\sin 3A-\sin A=\sin (A+2A)-\sin A=3\sin A-4\sin^3 A-\sin A=2\sin A-4\sin^3 A$
$令\sin A=t,没有锐角的限制。\pi -3A\gt 0 \Rightarrow A\in (0,\frac{\pi }{6} ),2t-4t^3(t\in (0,\frac{\sqrt{3}}{2} )$
$第四题:2b^2-2a^2=c^2\Rightarrow 2\sin^2B -2\sin^2 A=\sin ^2C\Rightarrow 2\sin (B-A)=\sin C$
$2\sin (B-A)=\sin c=\sin (B+A)\Rightarrow \sin B\cos B=3\cos B\sin A\Rightarrow \tan B=3\tan A$
$设\tan A=t ,\tan (B-A)=\cfrac{3t-t}{1+3t^2} =\cfrac{2t}{1+3t^2}=\cfrac{2}{\frac{1}{t} +3t}$
$\Rightarrow \cfrac{1}{t} =3t\Rightarrow t=\frac{\sqrt{3} }{3} $

1、$e^x\ge x+1 \qquad 切点在(0,1)处,指数函数恒在直线y=x+1$上方。
2、$e^x\ge ex\qquad 切线过原点,切点在(e,1),指数函数恒在直线y=ex$上方。
3、$x-1\ge \ln x\quad 或\ln x\le x-1 切点在(1,0)处,对数函数恒在直线y=x-1$下方。
4、$\cfrac{x}{e}\ge \ln x \quad 或 \ln x \le \cfrac{x}{e} 切线过原点,切点在(e,1),指数函数恒在直线y=\cfrac{x}{e}$下方。

四、切线放缩

$1。证明:当a\ge 1时,a(x+1)\gt \cfrac{\ln x+1}{x}$
$解:定义域x\gt 0,a\ge 1\Rightarrow a(x+1)\ge x+1即证x+1\gt \cfrac{\ln x+1}{x}$
${\color{Green} 即证:x(x+1)\gt\ln x+1} \Leftrightarrow x^2+{\color{Red} (x-1)} +1\ge {\color{Red} \ln x}+1$
$要先证明{\color{Red} x-1\ge \ln x}后使用$
$2、证明:当a\gt a\ge e时, e^x\ge a(\ln x+1)$
$定义域x\gt 0,a\ge e\Rightarrow a(\ln x+1)\ge e(\ln x+1)$
$要证 e^x\ge a(\ln x+1),即证e^x\ge e(\ln x+1){\color{Red} \Leftrightarrow e^{x-1}\ge \ln x+1} \Leftrightarrow {\color{Green} e^{x-1}} \ge {\color{Red} x-1} +1\ge {\color{Green} \ln x} +1$
$3、证明:当m\le 2时,e^x\gt \ln (x+m)$
$证: 定义域x \gt 0,2\ge m {\color{Red} \Rightarrow \ln (x+2)\ge \ln (x+m)} $
$e^x\ge x+1={\color{Red} x+2} -1\ge \ln (x+2)\ge \ln (x+m)$
$4-1。证明:xe^x\ge \ln x +x+1 $
$证明:定义域x\gt 0,xe^x=e^{\ln x+x}\ge \ln x+x+1$
$要证切线不等式成立,还要证明\ln x+x能取到0$
$4-2。已知不等式:xe^x-a(x+1)\ge \ln x 对\forall x\in (0,+\infty) 恒成立,则实数 a的取值范围是$
参变分离再放缩
$定义域x\gt 0,xe^x-\ln x \ge a(x+1)\Rightarrow a\le \cfrac{xe^x-\ln x}{x+1}$
$\le \cfrac{xe^x-\ln x}{x+1} =\cfrac{{\color{Red} e^{\ln x+x}} -\ln x}{x+1} \ge \cfrac{{\color{Red} \ln x+x+1} -\ln x}{x+1}=1$
$4.3、已知不等式x^{-3}e^x-a\ln x\ge x+1对于任意x\in (1,+\infty) 恒成立,则实数a的取值范围是$
$x^{-3}e^x-a\ln x\ge x+1\Leftrightarrow x^{-3}e^x-x-1\ge a\ln x$
$\Rightarrow a\le \cfrac{{\color{Red} x^{-3}e^x} -x-1}{\ln x} =\cfrac{{\color{Red} e^{x-3\ln x}} -x-1}{\ln x}\ge \cfrac{{\color{Red} x-3\ln x+1} -x-1}{\ln x} =-3$