zq3491 发布的文章

原题目:https://one.free.nf/usr/uploads/2025/onefile/derivative02.pdf
单调性问题:
6-1、$f(x)=\cfrac{1}{2}x^2-\ln x\quad {f}'(x)=x-\cfrac{1}{x}=\cfrac{x^2-1}{x} 递减区间:(0,1] $
6-2、$f(x)=e^x\cos x\quad {f}'(x)=e^x(\cos x+\sin x )=\sqrt[]{2}e^x\sin (x+\cfrac{\pi}{4} ) 递增区间:[0,\cfrac{3\pi}{4} ]$
7、③④
8-1、$y=x^3+x^2+mx+1是R上单调函数,求m。\begin{cases} {y}'=3x^2+2x+m \\\bigtriangleup =4-12m\le 0\end{cases}{y}'=3x^2+2x+m $
8-2、$f(x)=\cfrac{1}{3} x^3- x^2+ax-5在[-1.2]上不单调,求a。求导,画图分析{f}'(x)=x^2-2x+a \begin{cases} {f}'(1)\lt 0 \\{f}'(-1) \gt 0\end{cases}$
8-3、画图分析,$x^3-x$右侧增,必须保证直线$(2a-1)x+3a-4$减。
9、求导参变分离.$f(x)=2x-\cfrac{2}{x}-a\ln x \quad{f}' =2+\cfrac{2}{x^2}-\cfrac{a}{x} \le 0 ,x\in (1,2)$
$2x+\cfrac{2}{x}\le a ,对勾函数$
10、$10、f(x)=\log_{a}{(x^3-ax)}在(-\cfrac{1}{2} ,0)单调增,\begin{cases}\qquad a\gt1 \\3x^2-a\ge0\end{cases}\quad$或$\begin{cases}0\lt a\lt1 \\3x^2-a\le0\end{cases}\quad $
11-1、$f(x)=e^x(\cos x-a)\quad {f}' (x)=e^x(\cos x-a -\sin x)\Rightarrow a\ge \cos x-\sin x\Rightarrow$
$-\cfrac{a}{\sqrt[]{2} } \ge \sin(x-\cfrac{\pi}{4} )$
11-2、$f(x)=e^x(\sin x+a\cos x)\nearrow ,{f}' (x)\le 0\Rightarrow a\le \cfrac{\sin x+\cos x}{\sin x-\cos x},$
$\sin x与\cos x相当于两个变量,没法求最值,利用倍角公式,\cfrac{\sin x+\cos x}{\sin x-\cos x}=\sqrt{\cfrac{1+\sin 2x}{1-\sin 2x} } $

第4页\
9-2题目$f(x)=\cfrac{1}{2} x^2-2x+a\ln x $
${f}' (x)=x-2+\cfrac{a}{x} \quad x\gt 0 \Rightarrow \cfrac{a}{x} =2-x\Rightarrow a=2x-x^2\Rightarrow 0\lt a\lt 1$


9-3题目,参变分离,变号零点转化为变向交点
$f(x)=x\ln x-kx^2-x$
${f}' (x)=\ln x+1-2kx-1$
$令{f}' (x)=0,\Rightarrow \ln x=2kx\Rightarrow 2k=\cfrac{\ln x}{x} 有两个交点,\Rightarrow 0\lt 2k \lt \cfrac{1}{e} $


9-4题目:$f(x)=\cfrac{1}{3} x^3-\cfrac{a^x}{\ln a} $
${f}' (x)=x^2-a^x\quad x\gt 0$
$令{f}' (x)=x^2-a^x=\Rightarrow a^x=x^2两边取e为底的对数,得$
$g(x)\ge g(\cfrac{1}{e})= -\cfrac{1}{e},f(x)=\cfrac{1}{2} g(x^2),$
复合函数$t=x^2满足f(x)$的定义域,因而,复合函数的值域不变。即$f(x)\ge -\cfrac{1}{2e}$
$x\ln a=2\ln x \Rightarrow \cfrac{1}{2} \ln a=\cfrac{\ln x}{x} \Rightarrow 0\lt \cfrac{1}{2} \ln a \lt \cfrac{1}{e} \Rightarrow 1\lt a \lt e^{\frac{2}{e}}$


第5页2-1,求$f(x)=x^2\ln x$的最小值
$f(x)=x^2\ln x=\cfrac{1}{2}\cdot 2x^2\ln x=x^2\ln x^2 $
$构造g(x)=x\ln x,{g}' (x)=\ln x+1,$
$0\lt x\lt \cfrac{1}{e},{g}' (x)\lt 0,g(x)\searrow ;$
$\cfrac{1}{e}\lt x\lt +\infty ,{g}' (x)\gt 0,g(x)\nearrow$
$g(x)\ge g(\cfrac{1}{e})= -\cfrac{1}{e},f(x)=\cfrac{1}{2} g(x^2),$
复合函数$t=x^2满足f(x)$的定义域,因而,复合函数的值域不变。即$f(x)\ge -\cfrac{1}{2e}$

$x_1,x_2\gt 0,且x_1\ne x_2,则有:\sqrt{x_1x_2} \lt \cfrac{x_1-x_2}{\ln x_1-\ln x_2} \lt\cfrac{x_1+x_2}{2} $
先证明左边的不等式:
$x_1,x_2\gt 0,且x_1\ne x_2,则有:\sqrt{x_1x_2} \lt \cfrac{x_1-x_2}{\ln x_1-\ln x_2} $
$不妨设x_1\gt x_2,\ln x_1-\ln x_2 \lt \cfrac{x_1-x_2}{\sqrt{x_1x_2} } = \cfrac{x_1}{\sqrt{x_1x_2} }-\cfrac{x_2}{\sqrt{x_1x_2} }=\sqrt{\cfrac{x_1}{x_2} } -\sqrt{\cfrac{x_2}{x_1} }$

$令t=\sqrt{\cfrac{x_1}{x_2} } 换元,比t=\cfrac{x_1}{x_2}好$
$\ln \cfrac{x_1}{x_2} \lt \sqrt{\cfrac{x_1}{x_2} } -\sqrt{\cfrac{x_2}{x_1}}\Rightarrow $
$2\ln t \lt t-\cfrac{1}{t} \quad(t\gt1)$
构造函数$f(t)=t-\cfrac{1}{t}-2\ln t \quad (t\gt 1)$
${f}' (x)=1+\cfrac{1}{t^2}-\cfrac{2}{t} =\cfrac{t^2-2t+1}{t^2}$
${f}' (t)\gt 0\quad (t\gt 1) \therefore f(t)\gt f(1)=0$


再证明右边的不等式:
$\cfrac{x_1-x_2}{\ln x_1-\ln x_2} \lt\cfrac{x_1+x_2}{2} $
$不妨设x_1\gt x_2; $
$\cfrac{1}{\ln x_1-\ln x_2} \lt \cfrac{(x_1+x_2)}{2(x_1-x_2)} \Rightarrow $
$\ln x_1-\ln x_2\gt \cfrac{2(x_1-x_2)}{x_1+x_2} \Rightarrow $
$\ln \cfrac{x_1}{x_2}\gt \cfrac{2(\cfrac{x_1}{x_2}-1)}{\cfrac{x_1}{x_2} +1}\quad$ 右式分子分母除以$\cfrac{1}{2} x_2 $
换元令$t=\cfrac{x_1}{x_2}\quad (t\gt 1)\quad{\color{Red} 这便是飘带放缩 }$
$\ln t \gt \cfrac{2t-2}{t+1} =2-\cfrac{4}{t+1} \qquad$
$\Rightarrow \ln t -2+\cfrac{4}{t+1} \gt 0\quad $不去分母构造函数,法一:
构造$f(t)=\ln t+\cfrac{4}{t+1} -2\quad (t\gt 1)$
${f}' (t)=\cfrac{1}{t} -\cfrac{4}{(t+1)^2} =\cfrac{(t+1)^2-4t}{t(t+1)^2} =\cfrac{(t-1)^2}{t(t+1)^2}$
${f}' (t)\gt 0 \quad\therefore f(t)\nearrow f(t)\gt f(1)=0$

去分母再构造函数,法二:
$\ln t \gt \cfrac{2t-2}{t+1} \Rightarrow (t+1)\ln t\gt 2t-2$
构造$g(t)=(t+1)\ln t-2t +2$
${g}' (t)=\ln t+\cfrac{t+1}{t}-2=\ln t +\cfrac{1}{t} -1 $
${g}'' (t)=\cfrac{1}{t}-\cfrac{1}{t^2} =\cfrac{t-1}{t^2} \quad t\gt 1$
${g}'' (t)\gt0\Rightarrow {g}' (t)\nearrow \Rightarrow {g}' (t)\gt {g}' (1)=0$
$\Rightarrow g (t)\nearrow \Rightarrow g(t)\gt g(1)=0$

飘带放缩

$\cfrac{1}{2}(x-\cfrac{1}{x} )\le \ln x\le \cfrac{2(x-1)}{x+1} \quad x\in (0,1]$
$\cfrac{2(x-1)}{x+1} \le \ln x\le \cfrac{1}{2}(x-\cfrac{1}{x} ) \quad x\in [1,+\infty)$

https://one.free.nf/usr/uploads/2025/onefile/derivative02.pdf
6-1、讨论 $f(x)=\frac{1}{2} x^2-(a+1)x+a\ln x$的单调性;
${f}'(x)=x-(a+1)-\cfrac{a}{x} =\cfrac{x^2-(a+1)x+a}{x} =\cfrac{(x-1)(x-a)}{x}$
"符号函数存在两个零点,一个是1,一是a,因而对a的分类讨论是围绕=1,>1,<1以及a是否$\le 0$。
⒈、${\color{Red} 当a= 1时,}{f}'(x)\ge 0,f(x)在(0,+\infty)内\nearrow ;$
⒉、${\color{Red} 当a\gt 1时,} x\in (0,1)及(a,+\infty)内, {f}'(x)\gt 0,f(x)\nearrow;$
$\qquad \qquad x\in (1,a) {f}'(x)\lt 0,f(x)\searrow .$
⒊、${\color{Red} 当a\lt 1时,} $
$\qquad \quad {\color{Green}① }a\le 0时,x\in (0,1),{f}' (x)\lt 0,f(x)\searrow ;$
$\qquad \qquad x\in(1,+\infty),{f}' (x)\gt 0,f(x)\nearrow ;$
$\qquad \quad {\color{Green}② } 0\lt a\lt 1时,x\in (0,a)及(1,+\infty)时,{f}' (x)\gt 0,f(x)\nearrow $
$\qquad\qquad \qquad x\in(a,1),{f}' (x)\lt 0,f(x)\searrow$

6-2、讨论$f(x)=\cfrac{1}{2}x^2-x-\cfrac{ax}{e^x}$
${f}' (x)=x-1-\cfrac{a(e^x-x\cdot e^x)}{e^x\cdot e^x}=\cfrac{(x-1)(e^x+a)}{e^x} $
${\color{Red} 1)} 当{\color{Red} a\ge 0} 时 ,$
$e^x+a\ge 0 $恒成立,导函数的符号仅取决于$(x-1),且x-1是\nearrow $
故当 $\quad x\lt 1,{f}' (x)\lt 0,f(x) \searrow $
当 $\quad x\gt 1,{f}' (x)\gt 0,f(x) \nearrow $
${\color{Red} 2)} 当{\color{Red}a\lt 0 } 时,e^x+a $可正可负,此时导函数的符号由$(x-1)和e^x+a$的两个因式共同决定,我们判断两者正负时,要先判断$1与\ln (-a)$的谁大谁小。因而,还要继续分类讨论之
$\qquad \quad {\color{Green} ①} 当{\color{Green} a=-e} $时,$x-1与e^x+a$的零点均为1,且两者都是增函数;故有:
$\quad x\in R, {f}' (x)\ge 0,f(x) \nearrow$
$\qquad \quad{\color{Green} ②} 当 1\lt \ln(-a)\Rightarrow e\lt -a \Rightarrow a\lt -e,故{\color{Green} a\lt -e} $时:
当$\quad x\lt 1 $或$x\gt \ln(-a),{f}' (x)\gt 0,f(x) \nearrow $
当$ \quad 1\lt x \lt \ln(-a),{f}' (x)\lt 0,f(x) \searrow$
$\qquad \quad{\color{Green} ③} 当{\color{Green} -e\lt a \lt 0 } $时,$ \ln(-a)\lt 1$,故有:
当$x\lt \ln(-a) 或x\gt 1,{f}' (x)\gt 0,f(x) \nearrow $
当$ 1\lt x \lt \ln(-a),{f}' (x)\lt 0,f(x) \searrow $
总结:含参函数单调性讨论;求求导函数,通通分,因式分解;因式分解后,别焦急求因式的零点(根),要先析含参的因式有没有可能恒为正或负情形,先对它讨论,如第一步(1)的$a\ge 0$
第二步,求各因式的零点,要对含的零点与常数比较大小进行分类,如$(2)1与\ln (-a)$,并将各因式调整为 单增函数,从分好类的零点从小到大排列,用穿线法画好图像。题目的②③情形只是交换零点,并没有改变穿线方向。



7、讨论$f(x)=1+(1+a)x-x^2-x^3$的单调性;题型:无法因式分解,应用$\bigtriangleup$
${f}' (x)=-3x^2-2x^2+(1+a), $
${\color{Red} Ⅰ.} 若\bigtriangleup =4+12(1+a)=12a+16\le 0$
即 $a\le-\cfrac{4}{3},{f}' (x)\le 0,f(x)在R\searrow $
${\color{Red} Ⅱ.} 若\bigtriangleup =12a+16\gt 0\quad 即a\gt \cfrac{4}{3}$
令${f}' (x)=0,得x=\cfrac{2\pm \sqrt{12a+16} }{-6} =\cfrac{-1\pm \sqrt{3a+4} }{-3}$
$\therefore f(x)在(-\infty,\cfrac{-1- \sqrt{3a+4} }{-3})\searrow,(\cfrac{-1- \sqrt{3a+4} }{-3},\cfrac{-1+ \sqrt{3a+4} }{-3}),\nearrow;(\cfrac{-1+\sqrt{3a+4} }{-3},+\infty),\searrow$



8-1、讨论$f(x)=x--\cfrac{1}{x}-2a\ln x$的单调性区间(不能因式分解)
${f}' (x)=1+\cfrac{1}{x^2}-\cfrac{2a}{x}\quad (x\gt0 ) $
${\color{Red}1^\circ } 若a\le 0,{f}' (x)\gt 0,f(x)在(0,+\infty)\nearrow$
${\color{Red}2^\circ } 若a\gt 0,{f}' (x)=\cfrac{x^2-2ax+1}{x^2} $
${\color{Green}Ⅰ. }若\bigtriangleup =4a^2-4\le 0,即0\le a\le 1时,$
${f}' (x)\ge 0(备注:此时没变号零点)f(x)在(0,+\infty)\nearrow$
${\color{Green}Ⅱ. } 若\bigtriangleup =4a^2-4\gt0 ,即a\gt 1,令{f}' (x)=0,得x=\cfrac{2a\pm\sqrt{4a^2-4} }{2}=a\pm\sqrt{a^2-1}$
故$f(x)在(0,a-\sqrt {a^2-1})\nearrow;(a-\sqrt {a^2-1},a+\sqrt {a^2-1})\searrow;(a+\sqrt {a^2-1},+\infty)\nearrow.$



8-2、讨论$f(x)=a\ln x+\cfrac{x-1}{x+1} $的单调性;
${f}' (x)=\cfrac{a}{x}+\cfrac{2}{(x+1)^2} (x\gt 0)$
${\color{Red} 1^{\circ } }若a\ge 0,{f}' (x)\gt 0,f(x)在(0,+\infty)\nearrow $
${\color{Red} 2^{\circ } }若a\lt 0,通分,{f}' (x)=\cfrac{a(x+1)^2+2x}{x(x+1)^2}= \cfrac{ax^2+(2a+2)x+a}{x(x+1)^2};$
设$g(x)=ax^2+(2a+2)x+a$;
${\color{Green}Ⅰ.} 若\bigtriangleup =8a+4\le 0,即a\le -\cfrac{1}{2}时,$
${f}' (x)\le 0,f(x)在(0,+\infty)\searrow;$
${\color{Green} Ⅱ.} 若\bigtriangleup =8a+4\gt 0,即 -\cfrac{1}{2}\lt a\lt 0时,$
设$x_1,x_2为g(x)=0的两根,x_1=\cfrac{-a-1-\sqrt{2a+1}}{a} \lt x_2=\cfrac{-a-1+\sqrt{2a+1}}{a}$
$\begin{cases} x_1+x_2=\cfrac{2a+2}{-a}\gt0 \\x_1x_2=1\gt0\end{cases}\Rightarrow \begin{cases} x_1\gt0\\x_2\gt0\end{cases}$
$\therefore f(x)在(0,x_1)\searrow;,(x_1,x_2)\nearrow,(x_2,+\infty)\searrow $



9、讨论$f(x)=x^3-x\ln x在[1,+\infty)$的单调性,并画出$f(x)$的简图;
$f(x)=x^3-x\ln x\quad(x\ge 1);$
${f}' (x)=3x^2-(\ln x +1)=3x^2-\ln x-1$
令$g(x)={f}' (x)=3x^2-\ln x-1$
${g}' (x)=6x-\cfrac{1}{x}=\cfrac{6x^2-1}{x} \gt0,{g}' (1)=5$
$\therefore g(x)= {f}' (x)在[1,+\infty)\nearrow,又{f}' (1)=2\Rightarrow f'(x)\ge {f}' (1)\gt 0$
$\therefore {f} (x)在[1,+\infty)\nearrow,又{f}(1)=1$
2025-02-11T03:15:54.png

10、讨论$f(x)=e^x\cos x-x在[0,\cfrac{\pi}{2}]$的单调性,并画出f(x)的简图。
$f(x)=e^x\cos x-x,\quad x \in[0,\cfrac{\pi}{2}]$
${f}'(x)=e^x(\cos x-\sin x)-1$
令$g(x)={f}'(x)=e^x(\cos x-\sin x)-1 ;$
${g}' (x)=e^x[(\cos x-\sin x)+(\cos x-\sin x)']=-2\sin xe^x\le 0$
$\therefore {f}' (x)在[0,\cfrac{\pi}{2}]\searrow ,{f}' (0)=0,{f}' (\cfrac{\pi}{2})=-e^{\frac{\pi}{2}}-1\Rightarrow {f}' (x)\le 0$
$\therefore {f} (x)在[0,\cfrac{\pi}{2}]\searrow ,{f}(0)=1,{f} (\cfrac{\pi}{2})=-\cfrac{\pi}{2}$
2025-02-11T09:34:45.png
11、讨论$f(x)=e^x-x^2-1$的单调性,并画出f(x)的简图。
$f(x)=e^x-x^2-1$
${f}' (x)=e^x-2x$
$令g(x)={f}' (x)=e^x-2x$
${g}' (x)=e^x-2 ,\nearrow $
${f}' (x)=g(x)在(-\infty,\ln 2)\searrow ;(\ln 2,+\infty)\nearrow,故{f}' (x)在x=\ln 2$处有极小值;
$即{f}' (x)\ge {f}' (\ln 2)=2-\ln 2 \gt0 $
$f(x) 在R上\nearrow ,且有f(0)=0$
2025-02-11T09:41:25.png



12、讨论$f(x)=e^x\ln x$的单调性,并画出$f(x)$的简图。
${f}' (x)=e^x(\ln x+\cfrac{1}{x} )$
令$g(x)=\ln x +\cfrac{1}{x};{g}' (x)=\cfrac{1}{x}+\cfrac{-1}{x^2}=\cfrac{x-1}{x^2} \nearrow $
$g(x)在(0,1)\searrow,(1,+\infty)\nearrow $
$\therefore g(x)_{min}=g(1)=1\Rightarrow g(x)\gt 0,即{f}' (x)\gt 0$
$\therefore f(x)在(0,+\infty)\nearrow,且f(1)=0$
2025-02-11T09:51:24.png
13、讨论$f(x)=x\ln (x+1)-ax^2(a\lt 0)$的单调性,并画出$f(x)$的简图。
${f}' (x)=\ln (x+1)+\cfrac{x}{x+1} -2ax$
$令g(x)={f}' (x)=\ln (x+1)+\cfrac{x}{x+1} -2ax$
${g}' (x)={f}''(x)=\cfrac{1}{x+1} +\cfrac{x+1-x}{(x+1)^2} -2a\gt 0$
$\therefore g(x)={f}' (x)在(-1,+\infty)\nearrow,且{f}' (0)=0;$
 $即-1\lt x\lt 0,{f}' (x)\lt 0,f(x)\searrow;$
$0\lt x\lt +\infty,{f}' (x)\gt 0,f(x)\nearrow;且有f(0)=0$
2025-02-11T09:55:02.png