圆锥曲线不联立之对偶式
适用于圆锥曲线中的直线过轴点时使用。
比如:$例1中直线过T(4,0),例2中直线过T(2,0),例3中直线过T(0,4)。$
前置知识:$动直线l过定点(t,0)交椭圆\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1于两点(x_1,y_1),(x_2,y_2)$
根据直线的两点式有:$\cfrac{y_1}{x_1-t}=\cfrac{y_2}{x_2-t}\Rightarrow x_1y_2-x_2y_1=t(y_2-y_1)$
构造$x_1y_2-x_2y_1的对偶式x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{t(y_2-y_1)}=\cfrac{a^2(1-\cfrac{y_1^2}{b^2})^2y_2^2-a^2(1-\cfrac{y_2^2}{b^2})^2y_1^2}{t(y_2-y_1)}=\cfrac{a^2(y_2^2-y_1^2)}{t(y_2-y_1)}=\cfrac{a^2}{t}(y_2+y_1)$
$动直线l过定点(0,t)交椭圆\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1于两点(x_1,y_1),(x_2,y_2)$
根据直线的两点式有:$\cfrac{y_1-t}{x_1}=\cfrac{y_2-t}{x_2}\Rightarrow x_1y_2-x_2y_1=t(x_1-x_2)$
构造$x_1y_2-x_2y_1的对偶式x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{t(x_1-x_2)}=\cfrac{b^2(1-\cfrac{x_2^2}{a^2})^2x_1^2-b^2(1-\cfrac{x_1^2}{a^2})x_2^2}{t(x_1-x_2)}=\cfrac{b^2(x_1^2-x_2^2)}{t(x_1-x_2)}=\cfrac{b^2}{t}(x_1+x_2)$
$例1、已知双曲线\Gamma :\cfrac{x^2}{4}-y^2=1,AB为左右顶点,设过定点T(4,0)的直线与双曲线$
$交于CD两点(不与AB重合),记直线AC,BD的斜率为k_1,k_2, 证明\frac{k_1}{k_2}为定值。-\cfrac{1}{3}$
听耳畔秋风知乎
$解:设l_{AB}:x=my+4,A(-2,0),B(2,0),C(x_1,y_1)D(x_2,y_2);$
$k_1=k_{AC}=\cfrac{y_1}{x_1+2},k_2=k_{BD}=\cfrac{y_2}{x_2-2}$
$\cfrac{y_1}{x_1-4}=\cfrac{y_2}{x_2-4}{\color{Green} \Rightarrow y_1(x_2-4)=y_2(x_1-4)\Rightarrow x_1y_2-x_2y_1=4(y_2-y_1)}$
它的对偶式有:
${\color{Green}x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1} =\cfrac{x_1^2y_2^2-x_2^2y_1^2}{ 4(y_2-y_1)}}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{ 4(y_2-y_1)}=\cfrac{4(y_1^2+1)y_2^2-4(y_2^2+1)y_2^2}{4(y_2-y_1)}=y_2+y_1$
$\cfrac{k_1}{k_2}=\cfrac{y_1}{x_1+2} \cdot\cfrac{x_2-2}{y_2} =\cfrac{x_2y_1-2y_1}{x_1y_2+2y_2}$
$\begin{cases} x_1y_2-x_2y_1=4y_2-4y_1\quad \\x_1y_2+x_2y_1=y_2+y_1 \qquad \end{cases}\Rightarrow$
$2y_2x_1=5y_2-3y_1;2y_1x_2=-3y_2+5y_1\Rightarrow \cfrac{k_1}{k_2}=\cfrac{2x_2y_1-4y_1}{2x_1y_2+4y_2}=\cfrac{-3y_2+5y_1-4y_1}{5y_2-3y_1+4y1}=-\cfrac{1}{3}$
$例2、设AB为椭圆\cfrac{x^2}{16}+\cfrac{y^2}{6} =1的长轴,该椭圆的动弦PQ过C(2,0),但不过原点,$翊空知乎
$直线AP与QB相交于M,PB与AQ相交于点N。求直线MN的方程。x=8$
根据极点极线知识可知,$l_{MN}为C(2,0)关于椭圆的极线段,x=8$
$解:设P(x_1,y_1),Q(x_2,y_2),A(-4,0),B(4,0)$
$l_{PQ}:\cfrac{y_1}{x_1-2} =\cfrac{y_2}{x_2-2} \Rightarrow x_1y_2-x_2y_1=2(y_2-y_1)$
容易得到它的对偶式:${\color{Red} x_1y_2+x_2y_1=8(y_2+y_1)} $
$\begin{cases} l_{AP}:x=\cfrac{x_1+4}{y_1} \cdot y-4 \quad①\\l_{BQ}:x=\cfrac{x_2-4}{y_2} \cdot y+4 \quad②\end{cases}$
$消y解出x_M$
$(x+4)\cdot \cfrac{y_1}{x_1+4}=(x-4)\cdot \cfrac{y_2}{x_2-4}\Rightarrow ( \cfrac{y_1}{x_1+4}-\cfrac{y_2}{x_2-4})\cdot x=-4( \cfrac{y_1}{x_1+4}+\cfrac{y_2}{x_2-4})\Rightarrow$
$x_M=\cfrac{-4(\cfrac{y_1}{x_1+4}+ \cfrac{y_2}{x_2-4})}{ \cfrac{y_1}{x_1+4}-\cfrac{y_2}{x_2-4}}=\cfrac{-4[y_1(x_2-4)+ y_2(x_1+4)]}{ y_1(x_2-4)-y_2(x_1+4)} =\cfrac{-4(x_1y_2+x_2y_1+4y_2-4y_1)}{x_2y_1-x_1y_2-4(y_1+y_2)}$
将对偶式代入上式,得$x_M=\cfrac{-4(8y_1+8y_2+4y_2-4y_1)}{2(y_1-y_2)-4y_1-4y_2}=8$
$例3、已知椭圆C:\cfrac{x^2}{a^2} +\cfrac{y^2}{b^2} =1(a\gt b\gt b\gt 0)过点P(2,\sqrt{2} ),$择梦周知乎
$离心率e为\cfrac{\sqrt{2} }{2} ,$
$1、求椭圆方程;$
$2、C的上下顶点为A,B,过点(0,4)斜率为k的直线与椭圆交于MN两点,证明直线BM与AN的$
$交点G在定直线,并求出该定直线方程。y=1$
https://one.free.nf/index.php/archives/43/
例4.2020年新课标I
$已知A,B分别为椭圆E:\cfrac{x^2}{a^2}+y^2=1(a>1)$左右两个顶点,G为E的上顶点,$\vec{AG} \cdot\vec{GB}=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.$
(1)求E的方程;$\cfrac{x^2}{9}+y^2=1 $
(2)证明:直线CD过定点。
$这题目是已知\frac{k_2}{k_2} =3求动直线过定点,根据极点极线的知识容易得到极点坐标为(\cfrac{3}{2} ,0)$
$解:设C(x_1,y_1)D(x_2,y_2),A(-3,0)B(3,0),P(6,t)$
$k_1=k_{AC}=\cfrac{y_1}{x_1+3}, k_2=k_{BD}=\cfrac{y_2}{x_2-3}$
$显然k_2=3k_1$
$预备知识\begin{cases} \cfrac{x_1^2}{a^2}+ \cfrac{y_1^2}{b^2}=1\\ \cfrac{x_2^2}{a^2}+ \cfrac{y_2^2}{b^2}=1\end{cases}$
两式相减,得$\cfrac{y_1-y_2}{x_1-x_2} =(e^2-1)\cfrac{x_1+x_2}{y_1+y_2} =-\cfrac{b^2}{a^2} \cfrac{x_1+x_2}{y_1+y_2}$
说明:这式子也是椭圆的第三定义的应用。是两点在椭圆上的斜率变换,加上两点的斜率公式,称作斜率双用。
$AC,BD各利用上面的变换,得 \begin{cases} k_1=k_{AC}=\cfrac{y_1}{x_1+3}=(e^2-1)\cfrac{x_1-3}{y_1}, ①\\ k_2=k_{BD}=\cfrac{y_2}{x_2-3}=(e^2-1)\cfrac{x_2+3}{y_2},②\end{cases}$
$①中左边的三倍=②的左边;①中右边的三倍=②的右边;$
$ \Rightarrow \begin{cases} 3\cfrac{y_1}{x_1+3}=\cfrac{y_2}{x_2-3} ,{\color{Red} ③} \\ \quad \\3\cfrac{x_1-3}{y_1}=\cfrac{x_2+3}{y_2},{\color{Red} ④} \end{cases}$
下面将有两种不同的方法得到答案。第一种是应用合比,第二种是斜率的对偶式应用。
$先来第一种:两式③④变形$
$\Rightarrow \begin{cases} \cfrac{y_1}{y_2}=\cfrac{(x_1+3)}{3(x_2-3)} , \\ \quad \\\cfrac{3(x_1-3)}{x_2+3}=\cfrac{y_1}{y_2},\end{cases}$
$\cfrac{y_1}{y_2}=\cfrac{4x_1-6}{4x_2-6}=\cfrac{x_1-\cfrac{3}{2} }{x_2-\cfrac{3}{2}}\Rightarrow {\color{Red} \cfrac{y_1}{x_1-\cfrac{3}{2} }=\cfrac{y_2}{x_2-\cfrac{3}{2}}}$
$故得,CD恒过(\cfrac{3}{2},0)$
法一毕!
法二前置知识:由直线的两点公式变形:
$\cfrac{y_1-{\color{Red} y} }{x_1-{\color{Red} x} } =\cfrac{y_1-y_2}{x_1-x_2}\Rightarrow 交叉相乘得\Rightarrow ( y_1-{\color{Red} y} )(x_1-x_2)=(x_1-{\color{Red} x} )(y_1-y_2)$
$\Rightarrow y_1(x_1-x_2)-{\color{Red} y} (x_1-x_2)=x_1(y_1-y_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow y_1(x_1-x_2)-x_1(y_1-y_2)={\color{Red} y} (x_1-x_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)+{\color{Red} x} (y_2-y_1)\quad{\color{Red} \bullet \circ }$
法二正题:
$\begin{cases} 3\cfrac{y_1}{x_1+3}=\cfrac{y_2}{x_2-3} ,{\color{Red} ③} \\ \quad \\3\cfrac{x_1-3}{y_1}=\cfrac{x_2+3}{y_2},{\color{Red} ④} \end{cases}两式交叉相乘$
$\begin{cases} 3y_1(x_2-3)=y_2(x_1+3),{\color{Red} ③} \\ \quad \\3y_2(x_1-3)=y_1(x_2+3),{\color{Red} ④} \end{cases}观察这两式子特点。$
$\Rightarrow \begin{cases} 3y_1x_2-9y_1=y_2x_1+3y_2, \\ \quad \\3y_2x_1-9y_2=y_1x_2+3y_1, \end{cases}$接着对两式作差!不是和!!
$\Rightarrow 3y_1x_2-3y_2x_1-9y_1+9y_2=y_2x_1+3y_2-y_1x_2-3y_1, $
$\Rightarrow 4y_1x_2-4y_2x_1=6y_1-6y_2\Rightarrow y_1x_2-y_2x_1=\cfrac{3}{2} (y_1-y_2)$
$对比\quad x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)+{\color{Red} x} (y_2-y_1)\quad{\color{Red} \bullet \circ }可知 ,CD恒过(\cfrac{3}{2},0)$
$例5、已知椭圆C:\cfrac{x^2}{a2}+\cfrac{y^2}{b^2} =1(a\gt b\gt0 )的离心率为\cfrac{\sqrt{2} }{2},且过点A(2,1)$



















----

