基本不等式复习
$1、a\gt 0,b\gt 0,若\cfrac{1}{a}+\cfrac{1}{b}=1,则a+b的最小值为:$
$2、a\gt 0,b\gt 0,若a+b=ab,则a+b的最小值为:$
$3、a\gt 0,b\gt 0,若a+b+1=ab,则a+b的最小值为:$
$提示:拼凑,消元。$
$4、a\gt 0,b\gt 0,若a+b=2,则\cfrac{1}{a+1}+\cfrac{1}{b+2}的最小值为:$
$提示:拼凑,双换元。$
$5、a\gt 0,b\gt 0,若2a+b=3,则\cfrac{1}{5a+b}+\cfrac{1}{a+2b}的最值为:$
$提示:拼凑,双换元。$
$6、a\gt 0,b\gt 0,则\cfrac{a}{a+2b}+\cfrac{b}{a+b}的最小值为:$
$提示:拼凑,双换元。$
$7、a\gt 0,b\gt 0,若a+2b=1,求\cfrac{b^2+a+1}{2ab}的最小值为:$
$提示:齐次化$
$8、已知实数x,y满足x\gt 0,y\gt 0,且x+\cfrac{y}{2} +\cfrac{1}{x}+\cfrac{2}{y}=5,求2x+y的最大值。$
$9、已知正实数a,b,c,满足b+c=1,则\cfrac{8ab^2+a}{bc} +\cfrac{18}{a+1}的最小值为:$
$10、已知a\gt b\gt 0,当代数式a^2+\cfrac{9}{b(a-b)}取最小值时,a+2b的值为:$
$11、已知:x,y\gt 0,且满足:\cfrac{8}{x^2} +\cfrac{1}{y}=1,求x+y的最小值:$
$12、若x,y\in \mathbb{R} ^+,(x-y)^2=(xy)^3,则\cfrac{1}{x} +\cfrac{1}{y}的最小值为:$
$8、解:\cfrac{1}{2} (2x+y) +\cfrac{2x+y}{xy}=5\Rightarrow (2x+y)(\cfrac{1}{2}+\cfrac{1}{xy})=5$
${\color{Red} \Rightarrow} \begin{cases} (2x+y)(\cfrac{1}{2}+\cfrac{1}{xy})=5\\ 2x+y\ge 2\sqrt{2xy} \end{cases}$
$令t=2x+y,t(\cfrac{1}{2}+\cfrac{1}{xy})=5\Rightarrow \cfrac{1}{2}+\cfrac{1}{xy}=\cfrac{5}{t} \Rightarrow\cfrac{1}{xy}=\cfrac{5}{t}- \cfrac{1}{2}=\cfrac{10-t}{2t}$
$\Rightarrow\cfrac{1}{xy}=\cfrac{10-t}{2t}\Rightarrow xy=\cfrac{2t}{10-t}$
${\color{Red} \therefore } 2x+y\ge 2\sqrt{2xy} {\color{Green} \Rightarrow } t\ge 2\sqrt{2\cdot \cfrac{2t}{10-t}} $
$两边平方,得t\times{\color{Red} t}\ge \cfrac{16{\color{Red} t} }{10-t}\Rightarrow t\ge \cfrac{16}{10-t}$
$\Rightarrow t^2-10t-16\le 0\Rightarrow (t-2)(t-8)\le 0,2\le t\le 8$
$别忘记检验是否相等,是否能取到最大值。$
$9、\cfrac{8ab^2+a}{bc} +\cfrac{18}{a+1}\Rightarrow \cfrac{a(8b^2+1)}{bc} +\cfrac{18}{a+1}{\color{Red} \quad \because }\quad\cfrac{8b^2+1}{bc}=\cfrac{8b^2+1}{bc}$
$\cfrac{8b^2+1}{bc} =\cfrac{8b^2+(b+c)^2}{bc}=\cfrac{9b^2+2bc+c^2}{bc} =\cfrac{9b}{c} +\cfrac{c}{b}+2\ge 2\sqrt{9} +2=8$
$ {\color{Red} \therefore } \cfrac{a(8b^2+1)}{bc} +\cfrac{18}{a+1}\ge 8a+\cfrac{18}{a+1}=8(a+1)+\cfrac{18}{a+1}-8\ge 2\sqrt{8\times 18} -8=16$
$10、{\color{Red} \because \quad } b(a-b)\le \cfrac{(a-b+b)^2}{4} =\cfrac{a^2}{4}\quad {\color{Red} \therefore \quad a^2+\cfrac{9}{b(a-b)}\ge a^2+\cfrac{36 }{a^2} \ge 2\sqrt{36} }\Rightarrow \begin{cases} \cfrac{36}{a^2}=a^2\\b=a-b \end{cases}\Rightarrow $
$11、(\cfrac{8}{x^2} +\cfrac{1}{y})x+y=\cfrac{8}{x} +\cfrac{x}{y} +y\ge 3\sqrt[3]{\cfrac{8}{x} \times\cfrac{x}{y} \times y}暴力消参求导也很快$
$12、(x-y)^2=(xy)^3齐次化之\Rightarrow \cfrac{(x-y)^2}{x^2y^2}=xy \Rightarrow (\cfrac{x-y}{xy})^2=(\cfrac{1}{y}-\cfrac{1}{x})^2=xy$
$\Rightarrow (\cfrac{1}{y}+\cfrac{1}{x})^2-\cfrac{4}{xy}=xy\Rightarrow (\cfrac{1}{y}+\cfrac{1}{x})^2=xy+\cfrac{4}{xy}\ge 4 $
$答案:1:4,2:4,3:2\sqrt{2} ;4:\cfrac{4}{5}$;12:2$





