端点效应
题型描述:
已知函数$f(x)=e^x\ln (x+1)-a\cdot \sin \pi x+\sqrt{1+x^2}+\cdots 满足f(x)\ge 0, 对\forall x\in [1,+\infty)$恒成立,求$a$的取值范围。
必要条件:
$f(1)\ge 0或\begin{cases} f(1)=0\\{f}'(1)\ge 0 \end{cases}或\begin{cases} f(1)=0\\{f}'(1)= 0\\{f}''(1)\ge 0 \end{cases}\quad$由此求出参数的范围。
已知函数$f(x)=(1-ax)\ln (1+x)-x\quad $
$(1)当a=2时,求f(x)$的极值。
$(2)当x\ge 0时,f(x)\ge 0,求a$的取值范围。
(2)解:$f(0)=0\qquad $
${\color{Red} {f}'(x)} =-a\ln (1+x)+\cfrac{1-ax}{1+x} -1 \quad {f}' (0)=0$
${\color{Green} {f}'' (x)} =\cfrac{-a}{1+x}+\cfrac{-a(1+x)-(1-ax)}{(1+x)^2}=\cfrac{-a}{1+x} +\cfrac{-1-a}{(1+x)^2} $
${f}'' (0) =-a-a-1\ge 0\Rightarrow {\color{Green} a\le -\cfrac{1}{2} } $
${\color{Red} 下面证明:当a\le -\cfrac{1}{2}时,对于\forall x\in [0,+\infty) ,f(x)\ge 0恒成立。} $
${\color{Green} 下面证明充分性:} $
说明:证明充分性时,先把自变量x看成常量,氢参数a看作自变量,分析参变量如何影响函数值的变化。大部分题目都是关于参数的单调函数,像本题$f(x)=(1-ax)\ln(1+x)-x=-x\ln(1+x){\color{Red} a}+\ln(1+x)-x$是关于a的单调递减函数,故$f(x)\ge f(a=-\cfrac{1}{2}),即f(x)\ge (1+\cfrac{1}{2}x)\ln (1+x)-x\ge 0,{\color{Green} 这是端点效应的核心作用,消去参数!} $
$f(x)\ge (1+\cfrac{1}{2}x)\ln (1+x)-x\ge 0\quad $
令$g(x)=(1+\cfrac{1}{2}x)\ln (1+x)-x\quad $
${\color{Red}{g}' (x) } =\cfrac{1}{2}\ln (1+x)+(1+\cfrac{1}{2}x)\cfrac{1}{1+x}-1 $
${\color{Green} {g}''(x) } =\cfrac{\cfrac{1}{2} }{1+x} +\cfrac{-\cfrac{1}{2} }{(1+x)^2} =\cfrac{x }{2(1+x)^2} \ge0$
${g}''(x)\ge0\Rightarrow {g}' (x)\nearrow \Rightarrow {g}' (x)\ge {g}' (0)=0$
${g}' (x)\ge 0\Rightarrow g(x)\nearrow \Rightarrow g(x)\ge g(0)=0$
总结解题步骤:
${\color{Red} \quad ①\quad }$端点效应先猜答案,必要性探路,单调含参
${\color{Green} \quad ②\quad}$ 证明充分性,把参数看作变量,达到消去参数的目的。
${\color{Red}\quad ③\quad }$ 严格来说,还要证明当$a\gt -\cfrac{1}{2} 时,\exists x_0使得,x\in [0,x_0],{f}'(x)\le 0,f(x)\le f(0)=0,$不符合题意。
若关于x的不等式,$2x^2\ln x\ge 4ax\ln x-x^2+a在\forall x \in [1,+\infty)$上恒成立,求实数$a$的取值范围。
解:$f(x)=4ax\ln x-x^2+a-2x^2\ln x\le 0$
$f(1)=-1+a\le 0\Rightarrow a\quad至少满足\quad a\le 1$
证明充分性:
$f(x)=(4x\cdot\ln x+1)\cdot a-x^2-2x^2\ln x\quad f(x)有关a的递增函数$
$\le 4x\cdot\ln x+1-x^2-2x^2\ln x\quad $
令$g(x)=(4x-2x^2)\ln x+1-x^2\quad $
${g}' (x)=(4-4x)\ln x+(4x-2x^2)\cdot \cfrac{1}{x}-2x=(4-4x)\ln x +4-4x $
${g}' (x)=4(1-x)(\ln x +1)\quad \because (1-x)\le 0 ,\quad \ln x +1\gt0 \Rightarrow {g}' (x)\le 0$
$g(x)\ge g(1)=0,得证$