隐零点(5页)
1、证明:$e^x\gt \ln (x+3)-\cfrac{1}{2}$
$\Leftrightarrow e^x-\ln (x+3)+\cfrac{1}{2}\gt 0\Leftrightarrow {\color{Red} [e^x-\ln (x+3)+\cfrac{1}{2}]_{min}\gt 0} $
设$f(x)=e^x-\ln (x+3)+\cfrac{1}{2}\quad {f}'(x)=e^x-\cfrac{1}{x+3} \nearrow $
${\color{Red} 观察} \quad {f}' (0)=e^0 -\cfrac{1}{3} =\cfrac{2}{3}\gt0,\quad {f}' (-1)=\cfrac{1}{e}-\cfrac{1}{2} \lt 0,记住: \cfrac{1}{e}=0.36788$
$\exists x_0\in (-1,0)使得{f}' (x_0)=e^{x_0}-\cfrac{1}{x_0+3} =0\Rightarrow e^{x_0}=\cfrac{1}{x_0+3,} $
$(-3,x_0),{f}' (x)\lt 0,f(x)\searrow ;$
$(x_0,+\infty),{f}' (x)\gt 0,f(x)\nearrow ;{\color{Red} 即f(x)在x_0处有最小值f(x_0)} $
$f(x)\ge f(x_0)=e^{x_0}-\ln(x_0+3)+\cfrac{1}{2}=\cfrac{1}{x_0+3}+x_0+\cfrac{1}{2}$
判断$f(x_0)\ge 0$有两种方法:利用导数和对勾函数;
方法1:
$\because x_0\in (-1,0),且f(x_0)=\cfrac{1}{x_0+3}+x_0+3-3+\cfrac{1}{2}在(-2,+\infty)$单调递增,$f(x_0)\gt f(-1)=0$
$\therefore f(x)\ge f(x_0)\gt 0$
方法2:
令$x\in (-1,0),设g(x)=\cfrac{1}{x+3}+x+\cfrac{1}{2} \quad {g}'(x)= 1-\cfrac{1}{(x+3)^2}\gt 0$
$\therefore \quad \Rightarrow g(x)\nearrow g(x)\gt g(-1)=\cfrac{1}{-1+3}-1+\cfrac{1}{2} =0$
2、证明:$x^2e^x\gt \ln x+\cfrac{1}{3}$
令$f(x)=x^2e^x- \ln x-\cfrac{1}{3} \quad (x\gt0 ) {\color{Red}\quad 即证f(x)_{min}\gt 0}$
${f}' (x)=(x^2+2x)e^x-\cfrac{1}{x}\quad$
设$g(x)= {f}' (x)\quad {g}' (x)=(x^2+2x+2x+2)e^x+\cfrac{1}{x^2}\gt 0 $
$\because {g}' (x)\gt 0\Rightarrow {f}' (x)\nearrow$
${f}' (1)\gt 0\quad {f}' (\cfrac{1}{5} )\lt 0$
$\exists x_0\in (\cfrac{1}{5},1),使得{f}' (x_0)=(x_0^2+2x_0)e^{x_0}-\cfrac{1}{x_0} =0$
即$x\in (0,x_0)\quad {f}' (x)\lt 0\quad f(x)\searrow $
$x\in (x_0.+\infty)\quad {f}' (x)\gt 0\quad f(x)\nearrow $
$f(x)\ge f(x_0)=x_0^2e^{x_0}- \ln x_0-\cfrac{1}{3}= {\color{Red}f(x)_{min}}$
$x_0(x_0+2)e^{x_0}=\cfrac{1}{x_0} \Rightarrow x_0^2e^{x_0}=\cfrac{1}{x_0+2}$
${\color{Red}f(x)_{min}}=x_0^2e^{x_0}- \ln x_0-\cfrac{1}{3}=\cfrac{1}{x_0+2}-\ln x_0-\cfrac{1}{3}$
设$g(t)=\cfrac{1}{t+2}-\ln t-\cfrac{1}{3}\quad (\cfrac{1}{5}\lt t \lt 1)$
$g(t)单调递减,设g(t)\gt g(1)=\cfrac{1}{1+2}-\ln 1-\cfrac{1}{3} =0= {\color{Red}f(x)_{min}}\quad $得证
3、证明:当$a\ge 1时,3e^x+ax^2+x-1\gt 0$
${\color{Red} 方法一:隐零点回避} a\ge 1\quad \Rightarrow ax^2\ge x^2,\quad 3e^x+ax^2+x-1\gt 0\Leftrightarrow 3e^x+ax^2+x-1\ge 3e^x+x^2+x-1\gt 0$
$3e^x+x^2+x-1\gt 0\Leftrightarrow 3+\cfrac{x^2+x-1}{e^x} \gt0\quad \Leftrightarrow {\color{Red} 证明: (3+\cfrac{x^2+x-1}{e^x})_{min}\gt0}$
令$f(x)=3+\cfrac{x^2+x-1}{e^x}$
${f}' (x)=\cfrac{2x+1-(x^2+x-1)}{e^x} =\cfrac{-(x^2-x-2)}{e^x}=\cfrac{-(x-2)(x+1)}{e^x} $
$x\in (-\infty ,-1)\quad {f}' (x)\lt 0\quad f(x)\searrow $
$x\in (-1,2)\quad {f}' (x)\gt 0\quad f(x)\nearrow ;$
$x\in (2,+\infty)\quad {f}' (x)\lt 0\quad f(x)\searrow $
当$x\gt 2时,f(x)单调递减,但x^2+x-1\gt 0即,f(x)\gt 3$,所以$f(x)的最小值为f(-1)=3-e\gt 0$恒成立。
${\color{Red} 方法二:} 设f(x)=3e^x+x^2+x-1\quad {\color{Red} 证明f(x)_{min}\gt 0}\quad {f}' (x)=3e^x+2x+1$
${f}' (x)=3e^x+2x+1\nearrow {f}'(-1)=\cfrac{3}{e}-2+1\gt 0 \qquad {f}' (-2)=4\lt 0$
故$\exists x_0\in (-2,-1),使得{f}'(x_0)=0 即,3e^{x_0}=-2x_0-1$
$f(x)在(-\infty,x_0)\searrow ;f(x)在(x_0,+\infty)\nearrow$
故$f(x)\ge f(x_0)=3e^{x_0}+x_0^2+x_0-1=-2x_0-1+x_0^2+x_0-1=x_0^2-x_0-2=(x_0-2)(x_0+1)$
$\because x_0\lt -1,\therefore (x_0-2)\lt 0且 x_0+1\lt 0,故(x_0-2)(x_0+1)\gt 0\Rightarrow f(x)\gt 0得证$
4、证明:当$a\ge 1时,a(x+1)\gt \cfrac{\ln x+1}{x}$
${\color{Red} 法一: } a\ge 1\Rightarrow a(x+1)\ge x+1\gt \cfrac{\ln x+1}{x}$
如果你很熟悉那6个超越函数的极值的话,一眼便看出右边有极大值。若看不出来,就证左边的最小值大于右边的最大值。
$\cfrac{e\ln (ex)}{ex}= e\cdot \cfrac{1}{e} =1,而左边的函数单调递增,当x\gt 0,左边\gt 1,$得证
${\color{Red} 方法二:} a(x+1)\ge x+1\gt \cfrac{\ln x+1}{x}\Rightarrow x+1-\cfrac{\ln x+1}{x}\gt 0
\quad设f(x)=x+1-\cfrac{\ln x+1}{x}$
${\color{Red} 即证f(x)_{min} \gt 0}\quad {f}' (x)=1-\cfrac{-\ln x}{x^2} =\cfrac{x^2+\ln x}{x^2} $
而$g(x)=x^2+\ln x在(0,+\infty)\nearrow 且g(1)=1\gt 0\quad g(\cfrac{1}{e})=\cfrac{1}{e^2}-1\lt 0 $
$\exists x_0\in (\cfrac{1}{e},1),使得g(x_0)=x_0^2+\ln x_0=0$
$f(x)在(0,x_0)\searrow ,(x_0,+\infty)\nearrow ,f(x)\ge {\color{Red} f(x)_{min} } =f(x_0)=x_0+1-\cfrac{\ln x_0+1}{x_0} =$
$x_0+1-\cfrac{- x_0^2+1}{x_0} =2x_0-\cfrac{1}{x_0} +1=g(x_0)\nearrow $
$g(x_0)的最大值为g(1)=0,\therefore f(x)\ge g(1)\gt f(x_0)= {\color{Red} f(x)_{min} } $
${\color{Red} 法三:对数单身狗:隐零点回避}$
$x+1\gt\cfrac{\ln x+1}{x}\Leftrightarrow {\color{Red} x^2+x\gt \ln x+1} \Rightarrow x^2+x-\ln x-1\gt 0$
令$f(x)= x^2+x-\ln x-1\quad {f}' (x)=2x+1-\cfrac{1}{x} =\cfrac{2x^2+x-1}{x}=\cfrac{(2x-1)(x+1)}{x} $
$x\in (0,\cfrac{1}{2}),{f}' (x)\lt 0,f(x)\searrow ;\qquad$
$x\in (\cfrac{1}{2},+\infty),{f}' (x)\gt 0,f(x)\nearrow \Rightarrow f(x)在x=\cfrac{1}{2}$ 有极小值。
$f(x)\ge f(1)=\ln 2-\cfrac{1}{4}\gt 0,$得证。
5、已知函数$f(x)=ax^2-ax-x\ln x,且f(x)\ge 0 $(2017年全国2-17题)
(1)求$a$;
(2)证明:$f(x)$存在唯一的极大值点$x_0$,且有$e^{-2}\lt f(x_0)\lt 2^{-2}$
解:(1)$ax^2-ax-x\ln x\ge 0\Leftrightarrow a(x-1)\ge \ln x$
左边为过$(1,0)$的直线$y=a(x-1)$;右边为对数函数,当且仅当直线是对数的切线时,$f(x)\ge 0$成立,易解得$a=1$;
(2)证明:$f(x)=x^2-x-x\ln x存在极大值点x_0$
$x^2-x-x\ln x=0$
${f}' (x)=2x-1-(\ln xx+1)=2x-2-\ln x\quad (x\gt0)$
令$g(x)={f}' (x)\quad {g}' (x)=2-\cfrac{1}{x} =\cfrac{2x-1}{x} \quad (x\gt 0 )$
故${f}' (x)在(0,\cfrac{1}{2})\searrow (\cfrac{1}{2} ,+\infty ) \nearrow $
${f}' (\cfrac{1}{e})=\cfrac{2}{e}-2-\ln \cfrac{1}{e}=\cfrac{2}{e}-1\lt 0, $
${f}' (\cfrac{1}{e^2})=\cfrac{2}{e^2}-2-\ln \cfrac{1}{e^2}=\cfrac{2}{e^2}\gt 0$
故$\exists x_0\in (\cfrac{1}{e^2},\cfrac{1}{e} ),使得{f}' (x_0)={\color{Red} 2x_0-2-\ln x_0=0} $
又$\because {f}' (1)=0,故{f}' (x)在 (0,x_0)大于0,(x_0,1)小于0,(1,+\infty)大于0$
$\therefore f(x)$存在唯一极大值点$x_0,\Rightarrow f(x_0)\gt f(\cfrac{1}{e})=\cfrac{1}{e^2}-\cfrac{1}{e}-\cfrac{1}{e}\ln \cfrac{1}{e}=\cfrac{1}{e^2}$
${\color{Green} 放大}f(x_0)=x_0^2-x_0-x_0\ln x_0= x_0^2-x_0-x_0{\color{Red} (2x_0-2) }=-x_0^2+x_0\lt -(\cfrac{1}{2})^2+\cfrac{1}{2}=\cfrac{1}{4}$
$\therefore e^{-2}\lt f(x_0)\lt 2^{-2}$
$6、2015年全国1卷21题目;设函数f(x)=e^{2x}-a\ln x$.
(1)讨论$f(x)$的导函数${f}' (x)$零点的个数。
(2)证明:当$a\gt 0$时,$f(x)\ge 2a+a\ln \cfrac{2}{a} $.
$解(1)f(x)的定义域为(0,+\infty). \quad {f}' (x)=2e^{2x}-\cfrac{a}{x}(x\gt 0).\quad 当a\le 0时, {f}' (x)\gt 0,{f}' (x)没有零点。$
$当a\gt 0时,\because 2e^{2x}单调递增,-\cfrac{a}{x}单调递增;$
${\color{Green} \because } {f}' (a)=2e^{2a}-\cfrac{a}{a}=2e^{2a}\gt 0,$
${\color{Green} \therefore } 当0\lt b \lt \cfrac{a}{4} 且b\lt \cfrac{1}{4} 时,{f}' (b)\lt 0,即a\gt 0时{f}' (x)存在唯一零点。$
$(2)证明:设{f}' (x)在(0,+\infty)的唯一零点为x_0。当x\in (0,x_0)时,{f}' (x)\lt 0;当x\in (x_0,\infty)时,$
$故f(x)在(0,x_0)单调递减,在(x_0,+\infty)单调递增,f(x)在x=x_0有极小值f(x_0).$
${\color{Green} {f}' (x_0)} =2e^{2x_0}-\cfrac{a}{x_0}=0\Rightarrow 2e^{2x_0}=\cfrac{a}{x_0}$
$两边取对数,得{\color{Green} 2x_0=\ln \cfrac{a}{2x_0}}$
$f(x_0)=e^{2x_0}-a\ln x_0=\cfrac{a}{2x_0}-a\ln x_0=\cfrac{a}{2x_0}+2ax_0-2ax_0-a\ln x_0=\cfrac{a}{2x_0}+2ax_0-a({\color{Green} 2x_0} +\ln x_0)$
$=\cfrac{a}{2x_0}+2ax_0-a({\color{Green} \ln \cfrac{a}{2x_0}} +\ln x_0)=\cfrac{a}{2x_0}+2ax_0-a\ln \cfrac{a}{2}=\cfrac{a}{2x_0}+2ax_0+a\ln \cfrac{2}{a}\ge 2a+a\ln \cfrac{2}{a}$






