不等式证明第4页(导数3综合题)
1、证明:$\ln x\ge -\cfrac{1}{x}+1\quad$
${\color{Red} 法一:} 作差f(x)=\ln x+\cfrac{1}{x}-1 \quad $
${ f}' (x)=\cfrac{1}{x}-\cfrac{1}{x^2} =\cfrac{x-1}{x} $
$x\in (0,1),{f}' (x)\lt 0,\quad f(x)\searrow ;$
$x\in (1,+\infty),{f}' (x)\gt 0,\quad f(x)\nearrow ;$
$f(x)\ge f(1)=0$
${\color{Red} 法2:}\cfrac{1}{x} -1\ge -\ln x \quad 换元令\cfrac{1}{x}=t $
$t -1\ge \ln t\qquad $
$f(t)=t-1-\ln t \quad {f}' (t)=1-\cfrac{1}{t}= \cfrac{t-1}{t} $
$(0,1),{f}' (t)\lt 0,\quad f(t)\searrow $
$(1,+\infty ),{f}' (t)\gt 0,\quad f(t)\nearrow$
$f(t)\ge f(1)=0\quad$得证
2、证明:$(5-4x^2)e^x\lt 8$
${\color{Red} ①} 当x^2 \ge \cfrac{5}{4},5-4x^2\lt 0成立 $
${\color{Red} ②} 只须再证x^2\lt \cfrac{5}{4} 时,也成立即可$
令$f(x)=(5-4x^2)e^x,\quad {f}'(x)= e^x(5-4x^2-8x)=-e^x(4x^2+8x-5)=-e^x(2x+5)(2x-1)$
当$x\lt -\cfrac{5}{2} 或x\gt \cfrac{1}{2}时 ,{f}'(x)\lt 0,f(x)\searrow ; $
当$-\cfrac{5}{2}\lt x\lt \cfrac{1}{2}时,{f}'(x)\gt 0,f(x)\nearrow ;$
$-\cfrac{5}{2} \lt -\cfrac{\sqrt{5} }{2} ,\cfrac{1}{2}\lt \cfrac{\sqrt{5} }{2},f(x)在 [-\cfrac{\sqrt{5} }{2},\cfrac{\sqrt{5} }{2}]内有极大值f(\cfrac{1}{2})=4e^\cfrac{1}{2},\quad \because\quad e\lt 4\Rightarrow \sqrt{e} \lt 2,4\sqrt[]{e} \lt 8$
法二:
$x^2\lt \cfrac{5}{4} \Rightarrow -\cfrac{\sqrt{5} }{2}\lt x \lt \cfrac{\sqrt{5} }{2},设f(x)=8-(5-4x^2)e^x;
{f}' (x)=e^x(4x^2+8x-5)=e^x(2x-1)(2x+5)$
$-\cfrac{\sqrt{5} }{2} \lt x \lt \cfrac{1}{2} ,{f}' (x)\;\lt 0,f(x)\searrow ;\qquad$
$\cfrac{1}{2} \lt x \lt \cfrac{\sqrt{5}}{2} ,{f}' (x)\gt 0,f(x)\nearrow ;\qquad$
$f(x)在x=\cfrac{1}{2}处有极小值f(\cfrac{1}{2})=4(2-\sqrt{e} )\gt 0$
3、证明:$\frac{2}{3}x^3\gt \cfrac{1}{2}x^2+\ln x$
$f(x)=\frac{2}{3}x^3 -\cfrac{1}{2}x^2-\ln x \quad{\color{Red}即证f(x)\gt0} $
${f}' (x)=2x^2-x-\cfrac{1}{x}=\cfrac{2x^3-2x^2+x^2-1}{x} $
$ =\cfrac{2(x-1)(2x^2+x+1)}{x}\quad \because\quad 2x^2+x+1\gt 0,$
$x\in (0,1),{f}' (x)\lt 0,\quad f(x)\searrow $
$x\in (1,+\infty ),{f}' (x)\gt 0,\quad f(x)\nearrow$
$f(x)\ge f(1)=\cfrac{2}{3}-\cfrac{1}{2}=\cfrac{1}{6} \quad$得证
4证明:$当a\ge 1时,ax^2\ge 2\ln x+1\quad $
解:$f(x)=ax^2-2\ln x-1\ge 0\quad {\color{Red}即证f(x)_{min}\gt0}$
${f}' (x)=2ax-\cfrac{2}{x} =\cfrac{2(ax^2-1)}{x} \quad (a\ge 1)$
$(0,\frac{1}{\sqrt{a} } )\quad {f}' (x)\lt 0,f(x)\searrow$
$ (\frac{1}{\sqrt{a} },+\infty )\quad {f}' (x)\gt 0,f(x)\nearrow $
$f(x)\ge f(\frac{1}{\sqrt{a} })=\ln a\ge0\quad (a\ge 1) $
${\color{Red} 方法二、}$
$a\ge 1,{\color{Red} ax^2\ge x^2}\ge 2\ln x +1,即证x^2-2\ln x-1\ge0\Leftrightarrow (x^2-2\ln x-1)_{min}\ge0$
令$f(x_0)=x^2-2\ln x-1\quad {f}' (x)=2x-\cfrac{2}{x} =\cfrac{2(x^2-1)}{x} =\cfrac{2(x+1)(x-1)}{x} $
$x\in (0,1)\searrow ,(1,+\infty)\nearrow ,f(x)在x=1处有最小值,f(1)=0,$得证
5、证明:$0\lt a\le e时,e^x\ge a(\ln x+1)$
解:$法一:当0\lt x \le\cfrac{1}{e},\ln x+1\lt 0,$
$e^x\gt 0\ge a(\ln x+1)\quad 成立。 $
$当x\gt\cfrac{1}{e}时,a(\ln x+1)\le e(\ln x+1)\le e^x$
$法二:\cfrac{1}{a} \cdot e^x\ge \ln x+1$
$\cfrac{1}{a}\ge \cfrac{1}{e} $
$ \cfrac{1}{a} \cdot e^x\ge \cfrac{1}{e} \cdot e^x=e^{x-1}\ge \ln x+1$
$设f(x)=e^{x-1}-\ln x-1\quad (x\gt 0)$
${f}' (x)=e^{x-1}-\cfrac{1}{x} \nearrow 且{f}' (1)=0$
$\therefore f(x)在(0,1)\searrow ,(1,+\infty)\nearrow \therefore f(x)\ge f(1)=0$
6、证明:$当a\le 2且x\gt 1时,a(x-1)-\ln x+1\lt e^{x-1}$
解:令$f(x)=e^{x-1}+\ln x+a(1-x)-1 \gt 0\quad {\color{Red}即证f(x)_{min}\gt0}(a\le 2,x\gt 1)$
${f}' (x)=e^{x-1}+ \cfrac{1}{x} -a$
${f}'' (x)=e^{x-1}-\cfrac{1}{x^2} \gt 0,{f}' (x)\nearrow ,$
${f}' (x)\ge {f}' (1)=2-a\ge 0,f(x)\nearrow$
$f(x)\gt f(1)=0$得证
方法二:
$\because a\le 2,{\color{Red} a(x-1)} -\ln x+1\le {\color{Red} 2(x-1)} -\ln x+1\lt e^{x-1}\Leftrightarrow $
$e^{x-1}\gt 2x-2-\ln x+1\Rightarrow e^{x-1}-2x+1+\ln x\gt 0$
$x\gt 1时,令f(x)=e^{x-1}-2x+1+\ln x $
${f}' (x)=e^{x-1}-2+\cfrac{1}{x} \qquad$
${f}'' (x)=e^{x-1}-\cfrac{1}{x^2}$
$\because x\gt 1时,e^{x-1}\gt 1,-\cfrac{1}{x^2}\lt 1,\therefore {f}'' (x)\gt 0$
$\Rightarrow {f}' (x)\nearrow 且{f}'(1)=0,\Rightarrow {f}' (x)\gt 0$
$\therefore f(x)\nearrow 且f(1)=0,f(x)\gt f(1)=0$


