适用于圆锥曲线中的直线过轴点时使用。
比如:$例1中直线过T(4,0),例2中直线过T(2,0),例3中直线过T(0,4)。$
前置知识:$动直线l过定点(t,0)交椭圆\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1于两点(x_1,y_1),(x_2,y_2)$
根据直线的两点式有:$\cfrac{y_1}{x_1-t}=\cfrac{y_2}{x_2-t}\Rightarrow x_1y_2-x_2y_1=t(y_2-y_1)$
构造$x_1y_2-x_2y_1的对偶式x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{t(y_2-y_1)}=\cfrac{a^2(1-\cfrac{y_1^2}{b^2})^2y_2^2-a^2(1-\cfrac{y_2^2}{b^2})^2y_1^2}{t(y_2-y_1)}=\cfrac{a^2(y_2^2-y_1^2)}{t(y_2-y_1)}=\cfrac{a^2}{t}(y_2+y_1)$

$动直线l过定点(0,t)交椭圆\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1于两点(x_1,y_1),(x_2,y_2)$
根据直线的两点式有:$\cfrac{y_1-t}{x_1}=\cfrac{y_2-t}{x_2}\Rightarrow x_1y_2-x_2y_1=t(x_1-x_2)$
构造$x_1y_2-x_2y_1的对偶式x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{t(x_1-x_2)}=\cfrac{b^2(1-\cfrac{x_2^2}{a^2})^2x_1^2-b^2(1-\cfrac{x_1^2}{a^2})x_2^2}{t(x_1-x_2)}=\cfrac{b^2(x_1^2-x_2^2)}{t(x_1-x_2)}=\cfrac{b^2}{t}(x_1+x_2)$


$例1、已知双曲线\Gamma :\cfrac{x^2}{4}-y^2=1,AB为左右顶点,设过定点T(4,0)的直线与双曲线$
$交于CD两点(不与AB重合),记直线AC,BD的斜率为k_1,k_2, 证明\frac{k_1}{k_2}为定值。-\cfrac{1}{3}$
听耳畔秋风知乎
$解:设l_{AB}:x=my+4,A(-2,0),B(2,0),C(x_1,y_1)D(x_2,y_2);$
$k_1=k_{AC}=\cfrac{y_1}{x_1+2},k_2=k_{BD}=\cfrac{y_2}{x_2-2}$
$\cfrac{y_1}{x_1-4}=\cfrac{y_2}{x_2-4}{\color{Green} \Rightarrow y_1(x_2-4)=y_2(x_1-4)\Rightarrow x_1y_2-x_2y_1=4(y_2-y_1)}$
它的对偶式有:
${\color{Green}x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1} =\cfrac{x_1^2y_2^2-x_2^2y_1^2}{ 4(y_2-y_1)}}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{ 4(y_2-y_1)}=\cfrac{4(y_1^2+1)y_2^2-4(y_2^2+1)y_2^2}{4(y_2-y_1)}=y_2+y_1$
$\cfrac{k_1}{k_2}=\cfrac{y_1}{x_1+2} \cdot\cfrac{x_2-2}{y_2} =\cfrac{x_2y_1-2y_1}{x_1y_2+2y_2}$
$\begin{cases} x_1y_2-x_2y_1=4y_2-4y_1\quad \\x_1y_2+x_2y_1=y_2+y_1 \qquad \end{cases}\Rightarrow$
$2y_2x_1=5y_2-3y_1;2y_1x_2=-3y_2+5y_1\Rightarrow \cfrac{k_1}{k_2}=\cfrac{2x_2y_1-4y_1}{2x_1y_2+4y_2}=\cfrac{-3y_2+5y_1-4y_1}{5y_2-3y_1+4y1}=-\cfrac{1}{3}$


$例2、设AB为椭圆\cfrac{x^2}{16}+\cfrac{y^2}{6} =1的长轴,该椭圆的动弦PQ过C(2,0),但不过原点,$翊空知乎
$直线AP与QB相交于M,PB与AQ相交于点N。求直线MN的方程。x=8$
根据极点极线知识可知,$l_{MN}为C(2,0)关于椭圆的极线段,x=8$
$解:设P(x_1,y_1),Q(x_2,y_2),A(-4,0),B(4,0)$
$l_{PQ}:\cfrac{y_1}{x_1-2} =\cfrac{y_2}{x_2-2} \Rightarrow x_1y_2-x_2y_1=2(y_2-y_1)$
容易得到它的对偶式:${\color{Red} x_1y_2+x_2y_1=8(y_2+y_1)} $
$\begin{cases} l_{AP}:x=\cfrac{x_1+4}{y_1} \cdot y-4 \quad①\\l_{BQ}:x=\cfrac{x_2-4}{y_2} \cdot y+4 \quad②\end{cases}$
$消y解出x_M$
$(x+4)\cdot \cfrac{y_1}{x_1+4}=(x-4)\cdot \cfrac{y_2}{x_2-4}\Rightarrow ( \cfrac{y_1}{x_1+4}-\cfrac{y_2}{x_2-4})\cdot x=-4( \cfrac{y_1}{x_1+4}+\cfrac{y_2}{x_2-4})\Rightarrow$
$x_M=\cfrac{-4(\cfrac{y_1}{x_1+4}+ \cfrac{y_2}{x_2-4})}{ \cfrac{y_1}{x_1+4}-\cfrac{y_2}{x_2-4}}=\cfrac{-4[y_1(x_2-4)+ y_2(x_1+4)]}{ y_1(x_2-4)-y_2(x_1+4)} =\cfrac{-4(x_1y_2+x_2y_1+4y_2-4y_1)}{x_2y_1-x_1y_2-4(y_1+y_2)}$
将对偶式代入上式,得$x_M=\cfrac{-4(8y_1+8y_2+4y_2-4y_1)}{2(y_1-y_2)-4y_1-4y_2}=8$


$例3、已知椭圆C:\cfrac{x^2}{a^2} +\cfrac{y^2}{b^2} =1(a\gt b\gt b\gt 0)过点P(2,\sqrt{2} ),$择梦周知乎
$离心率e为\cfrac{\sqrt{2} }{2} ,$
$1、求椭圆方程;$
$2、C的上下顶点为A,B,过点(0,4)斜率为k的直线与椭圆交于MN两点,证明直线BM与AN的$
$交点G在定直线,并求出该定直线方程。y=1$
https://one.free.nf/index.php/archives/43/
例4.2020年新课标I
$已知A,B分别为椭圆E:\cfrac{x^2}{a^2}+y^2=1(a>1)$左右两个顶点,G为E的上顶点,$\vec{AG} \cdot\vec{GB}=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.$

(1)求E的方程;$\cfrac{x^2}{9}+y^2=1 $
(2)证明:直线CD过定点。
$这题目是已知\frac{k_2}{k_2} =3求动直线过定点,根据极点极线的知识容易得到极点坐标为(\cfrac{3}{2} ,0)$

$解:设C(x_1,y_1)D(x_2,y_2),A(-3,0)B(3,0),P(6,t)$
$k_1=k_{AC}=\cfrac{y_1}{x_1+3}, k_2=k_{BD}=\cfrac{y_2}{x_2-3}$
$显然k_2=3k_1$
$预备知识\begin{cases} \cfrac{x_1^2}{a^2}+ \cfrac{y_1^2}{b^2}=1\\ \cfrac{x_2^2}{a^2}+ \cfrac{y_2^2}{b^2}=1\end{cases}$
两式相减,得$\cfrac{y_1-y_2}{x_1-x_2} =(e^2-1)\cfrac{x_1+x_2}{y_1+y_2} =-\cfrac{b^2}{a^2} \cfrac{x_1+x_2}{y_1+y_2}$
说明:这式子也是椭圆的第三定义的应用。是两点在椭圆上的斜率变换,加上两点的斜率公式,称作斜率双用。
$AC,BD各利用上面的变换,得 \begin{cases} k_1=k_{AC}=\cfrac{y_1}{x_1+3}=(e^2-1)\cfrac{x_1-3}{y_1}, ①\\ k_2=k_{BD}=\cfrac{y_2}{x_2-3}=(e^2-1)\cfrac{x_2+3}{y_2},②\end{cases}$
$①中左边的三倍=②的左边;①中右边的三倍=②的右边;$
$ \Rightarrow \begin{cases} 3\cfrac{y_1}{x_1+3}=\cfrac{y_2}{x_2-3} ,{\color{Red} ③} \\ \quad \\3\cfrac{x_1-3}{y_1}=\cfrac{x_2+3}{y_2},{\color{Red} ④} \end{cases}$
下面将有两种不同的方法得到答案。第一种是应用合比,第二种是斜率的对偶式应用。
$先来第一种:两式③④变形$
$\Rightarrow \begin{cases} \cfrac{y_1}{y_2}=\cfrac{(x_1+3)}{3(x_2-3)} , \\ \quad \\\cfrac{3(x_1-3)}{x_2+3}=\cfrac{y_1}{y_2},\end{cases}$
$\cfrac{y_1}{y_2}=\cfrac{4x_1-6}{4x_2-6}=\cfrac{x_1-\cfrac{3}{2} }{x_2-\cfrac{3}{2}}\Rightarrow {\color{Red} \cfrac{y_1}{x_1-\cfrac{3}{2} }=\cfrac{y_2}{x_2-\cfrac{3}{2}}}$
$故得,CD恒过(\cfrac{3}{2},0)$
法一毕!
法二前置知识:由直线的两点公式变形:
$\cfrac{y_1-{\color{Red} y} }{x_1-{\color{Red} x} } =\cfrac{y_1-y_2}{x_1-x_2}\Rightarrow 交叉相乘得\Rightarrow ( y_1-{\color{Red} y} )(x_1-x_2)=(x_1-{\color{Red} x} )(y_1-y_2)$
$\Rightarrow y_1(x_1-x_2)-{\color{Red} y} (x_1-x_2)=x_1(y_1-y_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow y_1(x_1-x_2)-x_1(y_1-y_2)={\color{Red} y} (x_1-x_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)+{\color{Red} x} (y_2-y_1)\quad{\color{Red} \bullet \circ }$
法二正题:
$\begin{cases} 3\cfrac{y_1}{x_1+3}=\cfrac{y_2}{x_2-3} ,{\color{Red} ③} \\ \quad \\3\cfrac{x_1-3}{y_1}=\cfrac{x_2+3}{y_2},{\color{Red} ④} \end{cases}两式交叉相乘$
$\begin{cases} 3y_1(x_2-3)=y_2(x_1+3),{\color{Red} ③} \\ \quad \\3y_2(x_1-3)=y_1(x_2+3),{\color{Red} ④}  \end{cases}观察这两式子特点。$

$\Rightarrow \begin{cases} 3y_1x_2-9y_1=y_2x_1+3y_2, \\ \quad \\3y_2x_1-9y_2=y_1x_2+3y_1, \end{cases}$接着对两式作差!不是和!!
$\Rightarrow 3y_1x_2-3y_2x_1-9y_1+9y_2=y_2x_1+3y_2-y_1x_2-3y_1, $
$\Rightarrow 4y_1x_2-4y_2x_1=6y_1-6y_2\Rightarrow y_1x_2-y_2x_1=\cfrac{3}{2} (y_1-y_2)$
$对比\quad x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)+{\color{Red} x} (y_2-y_1)\quad{\color{Red} \bullet \circ }可知 ,CD恒过(\cfrac{3}{2},0)$
$例5、已知椭圆C:\cfrac{x^2}{a2}+\cfrac{y^2}{b^2} =1(a\gt b\gt0 )的离心率为\cfrac{\sqrt{2} }{2},且过点A(2,1)$

$例1、已知椭圆C:\cfrac{x^2}{4} +\cfrac{y^2}{3}=1,求焦点的极线;$
$例2、\cfrac{x^2}{4} -y^2=1,求直线l:\frac{\sqrt{3} }{4} x-y=1的极点;$
$例3、已知椭圆C:\cfrac{x^2}{4} +\cfrac{y^2}{3}=1,左右端点A(-2,0),B(2,0), 过焦点F(1,0)的直线$
$l_0交椭圆C于PQ两点,连接AP,BQ交于点K,求K的轨迹方程.$
$解:画图找自极三角形,可知K的轨迹方程是F(1,0)关于C的极线\Rightarrow \frac{x}{4} =1\Rightarrow x=4,$
$即可用极点极线猜答案后证。$
解题过程:
$设l_0过焦点的直线方程为:x=my+1,点P(x_1,y_1),Q(x_2,y_2),K(x,y)({\color{Red} 反设直线,m为斜率的倒数} )$
$则有:\begin{cases} l_{AP}:x=\cfrac{x_1+2}{y_1} y-2\\ l_{BQ}:x=\cfrac{x_2-2}{y_1} y+2\end{cases}$
$消元去y,解x_K,\cfrac{y_1}{x_1+2} (x+2)=y=\cfrac{y_2}{x_2-2} (x-2),得$
$(\cfrac{y_2}{x_2-2} -\cfrac{y_1}{x_1+2}){\color{Red} x} =2(\cfrac{y_1}{x_1+2} +\cfrac{y_2}{x_2+2})\Rightarrow {\color{Red} x} =\cfrac{2(\cfrac{y_1}{x_1+2} +\cfrac{y_2}{x_2+2})}{\cfrac{y_2}{x_2-2} -\cfrac{y_1}{x_1+2}} $
$x=2\times \cfrac{{\color{Red} x_1y_2+x_2y_1} -2(y_1-y_2)}{{\color{Red} x_1y_2-x_2y_1} +2(y_1+y_2)}{\color{Peach} 红色部份为对偶式,我们还要可以应用圆锥曲线的对偶式,简化计算} $
${\color{Peach} 根据前面的猜测,我们只需要证明此式=4即可} $
$即证\cfrac{{\color{Red} x_1y_2+x_2y_1} -2(y_1-y_2)}{{\color{Red} x_1y_2-x_2y_1} +2(y_1+y_2)}=2$
$即证{\color{Red} x_1y_2+x_2y_1} -2(y_1-y_2)=2({\color{Red} x_1y_2-x_2y_1} +2(y_1+y_2))$
$即证\cfrac{{\color{Red} x_1y_2+x_2y_1} -2(y_1-y_2)}{{\color{Red} x_1y_2-x_2y_1} +2(y_1+y_2)}=2$
$即证:x_1y_2-3x_2y_1+6y_1+2y_2=0,消元去x,$
$即证:2my_1y_2-3(y_1+y_2)=0\quad {\color{Red} (\ast )}$
$应用韦达定理,联立l_0和C,\begin{cases} 3x^2+4y^2-12=0\\ x=my+1\end{cases}\Rightarrow$
$3(my+1)^2+4y^2-12=0\Rightarrow (3m^2+4)y^2+6my-9=0$
$\begin{cases} y_1+y_2=\cfrac{-6m}{3m^2+4} \quad ①\\y_1y_2=\cfrac{-9}{3m^2+4} \qquad ②\end{cases}$
$代入上式得,3\cdot \cfrac{-6m}{3m^2+4} -2m\cdot\cfrac{-9}{3m^2+4} =0$
$由此可见,K的轨迹为x=4是成立的。$


$例4、已知椭圆C:\cfrac{x^2}{4} +\cfrac{y^2}{3}=1,左右端点A(-2,0),B(2,0), 设点K的直线l:x=4上运动,$
$连接AK,BK, 分别交椭圆于P,Q, 问:直线PQ是否过定点,若是,请求出定值。$
解题思路:
从初始变量点K出发,设置变量,接着写出直线KA,KB,联立椭圆方程,求出点PQ坐标。
再用PQ坐标写出直线方程,观察一下哪个坐标可以代入成为恒等式!
最后一步最麻烦,直线方程代入是有计算量的关键式子,看出恒等式更是无从下手。那么利用极点极线先猜后证可以提供帮助!
$设K(4,t),则有\begin{cases} l_{AP}:x=\cfrac{6}{t}y-2\\l_{BQ}:x=\cfrac{2}{t}y+2 \end{cases}先联立C与l_{AP},求出P的坐标$
$\begin{cases} l_{AP}:x=\cfrac{6}{t}y-2\\3x^2+4y^2-12=0 \end{cases}\Rightarrow $
$3(\cfrac{6}{t}y-2)^2+4y^2-12=0 \Rightarrow 3(\cfrac{36}{t^2}y^2-\cfrac{24}{t}y+4)+4y^2-12=0$
$\Rightarrow (\cfrac{3\times 4\times 9}{t^2}+4 )y^2+\cfrac{3\times 4\times (-6)}{t}y =0\Rightarrow$
$y[(\cfrac{27}{t^2} +1)y-\cfrac{18}{t} ]=0 解得y=0,或{\color{Red} y_P=\cfrac{18t}{t^2+27} }代回直线l_{AP},得{\color{Red} x_P=\cfrac{-2t^2+54}{t^2+27} } $
$同理,联立l_{BQ}与C,有3(\cfrac{2}{t}y+2 )+4y^2-12=0\Rightarrow 3(\cfrac{24}{t^2}y+\cfrac{8}{t}y+4)+4y^2-12=0$
$\Rightarrow (\cfrac{3}{t^2} +1)y^2+\cfrac{6}{t}y=0 \Rightarrow {\color{Red} y_Q=-\cfrac{6t}{t^2+3} }$
$代入直线方程得,{\color{Red} x_Q=-\cfrac{2t^2-6}{t^2+3} }$
${\color{Green} 就这样,我们利用参数t,利用将PQ的坐标表示出来了} $
${\color{Green} 再设P(x_1,y_1)Q(x_2,y_2)写出直线PQ方程} $
$x=\cfrac{x_1-x_2}{y_1-y_2} (y-1)+x_1=\cfrac{x_1-x_2}{y_1-y_2} y-\cfrac{x_1-x_2}{y_1-y_2}$
$=\cfrac{x_1-x_2}{y_1-y_2} y-\cfrac{{\color{Red} x_2y_1-x_1y_2} }{y_1-y_2}$
$我们已经猜出定点坐标是F(1,0),所以我们可判断\cfrac{{\color{Red} x_2y_1-x_1y_2} }{y_1-y_2}=1;下一步,我们将PQ坐标代入证明它=1即可$
$x_P=\cfrac{-2t^2+54}{t^2+27},y_P=\cfrac{18t}{t^2+27}$
$x_Q=-\cfrac{2t^2-6}{t^2+3},y_Q=-\cfrac{6t}{t^2+3} ,$
$\cfrac{{\color{Red} x_2y_1-x_1y_2} }{y_1-y_2}=\cfrac{-\cfrac{2t^2-6}{t^2+3}\cdot\cfrac{18t}{t^2+27} -\cfrac{-2t^2+54}{t^2+27}\cdot -\cfrac{6t}{t^2+3} } {\cfrac{18t}{t^2+27}+\cfrac{6t}{t^2+3} }$
$=\cfrac{(-2t^2-6)\cdot18t -(-2t^2+54)\cdot (-6t)} {18t(t^2+3)+6t(t^2+27)}=$
$=\cfrac{3(2t^2-6)+54-2t^2}{3(t^2+3)+t^2+27} = \cfrac{4t^2+54-18}{4T^2+27+9} =1$
$由此可知直线PQ过点(1,0)$


不过这个解法太复杂了,完全依靠大力出奇迹。复杂点在于,用t表示点PQ的求解,和直线PQ直线的表示。既然难表示,那么就祭出设而不求大法!
法二:
$设直线l_{PQ}:x=my+n,点P(x_1,y_1)Q(x_2,y_2)写出两条直线$
$\begin{cases} l_{AP}: x=\cfrac{x_1+2}{y_1}y-2=m_1y-2\quad m_1=\cfrac{x_1+2}{y_1}\\ l_{BQ}:x=\cfrac{x_2-2}{y_1}y+2=m_2y+2\quad m_2=\cfrac{x_2-2}{y_2}\end{cases}$
$\frac{m_1}{m_2} =3=\cfrac{\cfrac{x_1+2}{y_1}}{\cfrac{x_2-2}{y_2}} \Rightarrow \cfrac{x_1+2}{y_1}=3\cfrac{x_2-2}{y_2}$
$\Rightarrow y_2(x_1+2)=3y_1(x_2-2)\Rightarrow x_1y_2-3x_2y_1+6y_1+2y_2=0\quad消元去x$
${\color{Red} 注:这里也可以不消元,而用斜率双用+直线两点式的变形求之}$
$2my_1y_2+(3n-6)y_1-(n+2)y_2=0\quad {\color{Red} (\ast )}$
$此式若n=1,便是例3的2my_1y_2-3(y_1+y_2)=0\quad {\color{Red} (\ast )}$
$马上上韦达定理,联立l_{PQ}和C$
$\begin{cases} x=my+n\qquad \qquad \\ 3x^2+4y^2-12=0\end{cases}\Rightarrow (3m^2+4)y^2+6mny+3n^2-12=0$
$\begin{cases} y_1+y_2=\cfrac{-6mn}{3m^2+4} \quad ①\\y_1y_2=\cfrac{3n^2-12}{3m^2+4}\quad②\end{cases}$
$②{\div} ①,\cfrac{y_1y_2}{y_1+y_2} =\cfrac{3n^2-12}{-6mn} =\cfrac{n^2-4}{-2mn} $
${\color{Red} \Rightarrow} y_1y_2={\color{Red} \cfrac{n^2-4}{-2mn}} \cdot (y_1+y_2){\color{Red} \Rightarrow} 2my_1y_2={\color{Red} \cfrac{n^2-4}{-n}} \cdot (y_1+y_2)$
${\color{Red} \cfrac{n^2-4}{-n}} \cdot (y_1+y_2)+(3n-6)y_1-(n+2)y_2=0\Rightarrow $
$(n^2-3n+2)y_1=(n^2+n-2)y_2\Rightarrow (n-2)(n-1)y_1=(n+2)(n-1)y_2$
$因为y_1\ne y_2,要上式恒成立,必要n=1,故直线过定点(1,0)$


10-19不消元,直接用斜率双用+直线两点式的变形
${\color{Red} 弦的斜率与弦中点与原点连线的斜率之积为定值e^2-1} $
$\begin{cases}k_{AP}=\cfrac{y_1}{x_1+2}=-\cfrac{3}{4}\cdot\cfrac{x_1-2}{y_1}\\ \quad \\k_{BP}=\cfrac{y_2}{x_2-2}=-\cfrac{3}{4}\cdot\cfrac{x_2+2}{y_2}\end{cases}$
${\color{Red}\because \quad } 3k_{AP}=k_{BP}\Rightarrow \begin{cases}3 \cdot\cfrac{y_1}{x_1+2}=\cfrac{y_2}{x_2-2}\\ \quad \\3\cdot\cfrac{x_1-2}{y_1}=\cfrac{x_2+2}{y_2}\end{cases}\Rightarrow \begin{cases} 3y_1(x_2-2)=y_2(x_1+2) \\ \quad \\3y_2(x_1-2)=y_1(x_2+2)\end{cases}$
$\Rightarrow \begin{cases} 3x_2y_1-6y_1=x_1y_2+2y_2 \\ \quad \\3x_1y_2-6y_2=x_2y_1+2y_1 \end{cases}两式相减\Rightarrow 3x_1y_2-3x_2y_1+6(y_1-y_2)=x_2y_1-x_1y_2+2(y_1-y_2)$
$\Rightarrow4x_1y_2-4x_2y_1=4(y_2-y_1)\Rightarrow x_1y_2-x_2y_1=y_2-y_1$
比较两点式的变形,可知,直线过定点$(1,0)$
$\cfrac{y_1-{\color{Red} y} }{x_1-{\color{Red} x} } =\cfrac{y_1-y_2}{x_1-x_2}\Rightarrow 交叉相乘得\Rightarrow ( y_1-{\color{Red} y} )(x_1-x_2)=(x_1-{\color{Red} x} )(y_1-y_2)$
$\Rightarrow y_1(x_1-x_2)-{\color{Red} y} (x_1-x_2)=x_1(y_1-y_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)+{\color{Red} x} (y_2-y_1)\quad{\color{Red} \bullet \circ }$

加粗文字$1、a,b,c\gt 0且不等1,求证a^{\log_{b}{c}}=c^{\log_{b}{a}} $
$2、x,y\gt 0,且x+2y+\sqrt{xy} =2,求x+3y的最小值$
$x+2y+\sqrt{xy} =\le x+2y+\frac{1}{2}( ax+\frac{y}{a}) =(1+\frac{a}{2} )x+(2+\frac{1}{2a} )y$
$3、已知函数f(x)=(x\in\mathbb{ R} )满足f(x)+f(4-x)=0,若函数f(x)与y=\frac{1}{x-2}$
$图象的交点横坐标分别为x_1,x_2,\dots ,x_n,则x_1+x_2+x_3+\dots+x_n=(\quad)$
$A.4n \quad B.2n\quad C.n\quad D.0$
$4、已知实数x,y满足\ln_{}{(2x+y)} -e^{x+2y}-x+y+2\ge 0,则x+y的值为(\quad )$
$A.1\quad B.\cfrac{2}{3} \quad C.\cfrac{1}{3} D.\cfrac{1}{5} $
$5、若\gt b\gt 0,且a^3-b^3=a^2-b^2,则\cfrac{1}{a} +\cfrac{1}{b}的取值范围是(\quad )$
$A.(1,\cfrac{4}{3}) \quad B.(\cfrac{4}{3},+\infty) \quad C.\(1,3) D.(3,+\infty) $

三角形角平分线定理:

这是平面几何的古老定理,是平面几何最基本的定理之一,但也是最先从初中平面几何删除的内容之一。

三角形的内角平分线分对边成两线段,两线段长度之比等于相邻的两边的长度之比(内角)

2025-09-25T07:42:08.png

AD是ΔABC的∠A的平分线,则
$\cfrac{AB}{AC}=\cfrac{BD}{DC}$

法一:过点C作角平分线的平行线,即可证得。
法二:用面积相等证

若三角形两边不相等,则其相应外角的平分线外分对边的两线段与相应邻边成比例。外角
2025-09-25T07:43:46.png

ΔABC中,AB≠AC,AD是外角∠CAE的平分线,外分边BC成线段BD和CD,则有:
$\cfrac{AB}{AC}=\cfrac{BD}{DC}$
法一:过点C作角平分线的平行线,即可证得。
法二:用面积相等证

塞瓦定理(Ceva's theorem)(赛娃)

三角形内三线交于一点,则有以下关系:

$\cfrac{AF}{FB} \cdot \cfrac{BD}{DC} \cdot \cfrac{CE}{EA}=1$
2025-09-25T07:48:16.png
${\color{Red} 等高的两个三角形面积之比=两三角形底边之比,和差比定理} $
$\cfrac{BD}{DC}=\cfrac{S_{\bigtriangleup ABD}}{S_{\bigtriangleup ADC}}=\cfrac{S_{\bigtriangleup GBD}}{S_{\bigtriangleup GDC}}= \cfrac{S_{\bigtriangleup ABD}-S_{\bigtriangleup GBD}}{S_{\bigtriangleup ADC}-S_{\bigtriangleup GDC}}=\cfrac{S_{\bigtriangleup GAB}}{S_{\bigtriangleup GAC}}$

同理$\cfrac{CE}{EA}=\cfrac{S_{\bigtriangleup CBE}}{S_{\bigtriangleup ABE}}=\cfrac{S_{\bigtriangleup CGE}}{S_{\bigtriangleup AGE}}= \cfrac{S_{\bigtriangleup CBE}-S_{\bigtriangleup CGE}}{S_{\bigtriangleup ABE}-S_{\bigtriangleup AGE}}=\cfrac{S_{\bigtriangleup GBC}}{S_{\bigtriangleup GAB}}$

同理$\cfrac{AF}{FB}=\cfrac{S_{\bigtriangleup CAF}}{S_{\bigtriangleup CBF}}=\cfrac{S_{\bigtriangleup GAF}}{S_{\bigtriangleup GBF}}= \cfrac{S_{\bigtriangleup CAF}-S_{\bigtriangleup GAF}}{S_{\bigtriangleup CBF}-S_{\bigtriangleup GBF}}=\cfrac{S_{\bigtriangleup GAC}}{S_{\bigtriangleup GBC}}$

$三式相乘,得\cfrac{AF}{FB} \cdot \cfrac{BD}{DC} \cdot \cfrac{CE}{EA}=1$


梅涅劳斯定理(Menelaus' theorem)

过三角形一边上的点做一直线,分别与其余两边或其延长线所截,则满足一下关系:

$\cfrac{AF}{FB} \cdot \cfrac{BD}{DC} \cdot \cfrac{CE}{EA}=1$​

2025-09-25T07:48:58.png
证明:
$\cfrac{AF}{FB}=\cfrac{S_{\triangle DAF}}{S_{\triangle DFB}} =\cfrac{S_{\triangle EAF}}{S_{\triangle EFB}} =\cfrac{S_{\triangle DAE}}{S_{\triangle DEB}}$
$\cfrac{BD}{DC}=\cfrac{S_{\triangle EBD}}{S_{\triangle EDC}}$
$\cfrac{CE}{EA}=\cfrac{S_{\triangle CED}}{S_{\triangle EDA}}$

  • 两个定理的联系

证明过程体现了两个定理的相似性。实际上这两个定理互为「对偶定理」,即只要证明其中一个,另一个自然成立。这是因为在射影平面中,确定一条直线和确定一个点,都需要三个坐标(齐次坐标),于是面空间点空间形成了自然的同构,而这样的同构映射保持结合性不变,所谓结合性,就是指「点在线上」、「线过某点」这样的结合关系。

对偶图形包含两个方面:

  1. 图元素互换:「点」与「线」互换;
  2. 结合性互换:「共点」与「共线」互换。

它们俩的逆定理也是成立的,这根据三角形的唯一性可以得到。

你从来没有对这些现象好奇过吗:

为什么三角形三条中线过同一点?
为什么三角形三条高线过同一点?
为什么三角形三条角平分线过同一点?
为什么三角形垂直平分线过同一点?
……

而这些情况,都可以收纳到塞瓦定理中,多么美妙!

一、阶差法:

2025-09-02T08:29:01.png
2025-09-02T08:29:26.png
2025-09-02T08:30:38.png

二、放缩法:

2025-09-02T08:31:45.png
2025-09-02T08:32:34.png

三、裂项法:

2025-09-02T08:34:26.png
2025-09-02T08:35:06.png
$\qquad\lt \cfrac{2}{e}(1^2+\cfrac{1}{2^2}+\cfrac{1}{3^2} +\dots+\cfrac{1}{n^2} ) $
2025-09-02T08:37:46.png
2025-09-02T08:38:17.png
2025-09-02T08:39:19.png

四、构造函数:

2025-09-02T08:41:03.png
2025-09-02T08:41:41.png
2025-09-02T08:42:23.png

五、最值型证明

2025-09-02T08:44:27.png
2025-09-02T08:45:01.png

六、累加型证明
---2025-09-02T08:47:39.png----
2025-09-02T08:48:15.png
七、数学归纳法:
2025-09-02T08:49:46.png
2025-09-02T08:50:22.png